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Many applications of wave interaction with a floating structure can be suitably approximated 
using potential flow theory, which assumes that the fluid is incompressible and inviscid.  
However, in some situations, such as the response of a floating wave energy device, flow 
separation, turbulence and wave breaking all make significant contributions to the fluid 
loading.  In these cases, the fluid viscosity must be accounted for, which usually means 
solving the full Navier-Stokes equations or RANS equations if the flow is turbulent.  To 
model wave breaking a two-fluid approach may be taken, in which the fluid flow equations 
are solved both in air and water so that complex free surface motions can be modelled 
including wave overturning and break up into spray. 
 
This work involves the application of adaptive hierarchical grids to free surface Navier-Stokes 
simulation of viscous waves over a submerged cylinder in a stationary tank.  Adapting 
quadtree grids (Greaves and Borthwick, 1998) are combined with a volume of fluid (VoF) 
approach, in which the CICSAM high resolution interface capturing scheme, derived by 
Ubbink (1997), is used for advection of the interface.  The Navier-Stokes equations are 
discretised using finite volumes with collocated primitive variables and solved using Issa’s 
(1986) PISO (Pressure Implicit with Splitting of Operators) algorithm.  The cylinder is 
included by using the technique of Cartesian cut cells described by Causon et al. (2000). 

Waves in viscous fluid 

The new method is used to simulate small amplitude viscous waves in a unit square tank, for 
which Wu et al. (2001) describe the linear analytical solution.  In Wu et al.’s (2001) solution, 
no shear conditions are used on the tank walls, which is equivalent to the slip boundary 
conditions used in the numerical solution. The liquid is given an initial cosine wave elevation,  

( )bxa /2cos πη = , where x is measured along the length of the tank, b is the length of the tank 
and a = 0.01 is the wave amplitude.  Here, grid adaptation is used to follow the movement of 
the free surface and refinement is provided in a band surrounding the air-water interface.  
Remeshing of the grid operates by dividing a cell into four if it lies on the free surface; 
derefinement takes place by removing four sibling cells and replacing them with their parent 
if each of the four sibling cells lies away from the free surface.   
 
For the first case considered, the Reynolds number, νgddRe = =200, where d is the mean 
water depth.  Results are presented by plotting the free surface elevation, ay /=η , recorded at 

the centre of the tank against non-dimensional time, dgt /=τ .  In Figure 1, results of 
calculations on quadtree grids of different resolution are plotted, and in Figure 2, results of 
different time step size are summarised for the 7 x 5 quadtree grid.  These demonstrate spatial 
and temporal grid convergence of the method.  In Figures 3 - 6, time history results are plotted 
for waves in fluid of different viscosity, Re = 2, 20, 200 and 2000, together with the analytical 



 

solution published by Wu et al. (2001).  In each case, the wave period is generally predicted 
well by the numerical scheme, but the wave amplitude is greater than the linearised analytical 
solution.  The numerical prediction is closer to the linearised analytical solution for larger 
Reynolds number (less viscous fluid). 

  
Figure 1  Comparison of quadtree grid sizes Figure 2  Comparison of time step 

  
Figure 3  Re = 2 Figure 4  Re = 20 

Separated flow past a cylinder 

Quadtree grids may be used to model boundaries of arbitrary shape.  However, due to their 
Cartesian nature, smooth curves will have a stepped approximation.  This modelling error can 
be eliminated by using the Cartesian cut cell technique, in which the  smooth shape of the 
body is cut out of the grid, leaving cut cells around the body boundary.  Special interpolations 
are used to calculate gradients and variables at faces for the finite volume scheme at these cut 
cells.  The adaptive quadtree cut cell method is first tested for fluid flow past a cylinder at 
Reynolds number, Re = 100.  The grid is initially refined around the cylinder boundary only, 
and as the vortex shedding flow develops, it adapts to areas of high vorticity.  Figure 7 shows 
the velocity vectors once vortex shedding has established at non-dimensional time, T=tD/uin 



 

= 129 (where D is the cylinder diameter and uin is the inlet velocity).  Figure 8 shows the time 
history of lift and drag force coefficients.  The Strouhal number is predicted to be 0.143, the 
mean drag coefficient to be 1.39 and the rms lift coefficient to be 0.13, which agree 
reasonably with experimental and numerical data given by Zhou and Graham (2000). 

  
Figure 5  Re = 200 Figure 6  Re = 2000 

 

 

 
 

Figure 7  T = 129 velocity vectors Figure 8 Time history of cD and cL for Re = 100 

Waves in viscous fluid over a submerged cylinder 

In this case, a submerged cylinder of diameter 0.1 is positioned at the horizontal centre of the 
unit square tank at depth 0.25 below the mean water level.  The lower fluid Reynolds number, 

νgddRe =  = 200.  A refinement band of 10 cells is maintained around the interface and 
the grid adapts dynamically at each time step.  The initial grid is shown in Figure 9 and the 
time history of the wave recorded at the centre of the tank is plotted in Figure 10 together with 
the wave-only case without a cylinder for comparison.  Calculations are made both on 
adapting quadtree grids and a fixed uniform grid of the smallest cell size (128 x 128).  
Preliminary results from both grids are plotted in Figure 10 and the difference between the 



 

two negligible.  The results show that the presence of the submerged cylinder in the tank acts 
to damp out the wave motion at the free surface. Use of adapting quadtree grids is found to 
achieve the same accuracy, but reduce both the computer storage  and CPU cost when 
compared with equivalent uniform grid calculations. 

 
 

Figure 9  Initial grid Figure 10  Wave elevation time history, 
Re=200 
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