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Introduction Within the Wagner approach and using the displacement po-
tential ¢, defined as the integral of the velocity potentjal

A simple model of water impact has been introduced by Wagith respect to time,

ner [6]. This model is still a main tool in analysis of loads,

which act on both rigid and elastic bodies entering watee Th t

two-dimensional and axisymmetrical rigid body cases have ¢(x,y,2,1) :/0 p(x,y,2,7) dr, 1)

been extensively studied. Wagner model has been exten%e% .

to solve the three-dimensional problems of rigid body irmpat € boundary value problem (BVP) with respect to the poten-

under the Wagner assumptions in [3] and [1]. tial ¢ has the form

However, most destructive fluid-structure impacts cannot

be accurately modelled if the hydro-elastic coupling phe- A¢p =0 inQ={z<0}

nomenon is not considered. 2D modal and beam finite 6=0 on the free surface

element methods to study the hydro-elastic impact havg ¢ (2)
been developed in [4] and [2]. The coupled problem of | 7, =/(%Y) —A(t) onthe wetsurface
fluid-structure impact for axisymmetrical cases was sulidie ¢ —0 when ¥ +y? + 22 — co

by modal method in [5]. However the methods developed for
2D cases cannot be directly applied to 3D impact problerdieref(z,y) is the body shape function ardt) is the pen-
A main difficulty in treating 3D elastic structure impact igtration depth/(0) = 0, f(0,0) = 0 andf(z,y) > 0. Free
due to unknown in advance geometry of the contact regiand wet surfaces are unknown and have to be determined as
between the entering deformable body and liquid. a part of the solution.
Using the displacement potential, two inequalities cantibe o
We present a method to solve the hydro-elastic 3D Wagttiained (see [1] for details)
problem for a linear elastic structure. This method corrside

the fluid and the structure problems as two separated prob- ¢ <0on{z=0} 3)
lems, which are solved alternatively until convergencenwit

proper regularization. Within this method the original fpro 96

lem is reduced to a fixed-point problem at each time step. s < f(x,y) — h(t)on{z =0} 4)

Numerical stability and convergence of the process are stud
ied and justified with the help of a simplified one-degree &¥Stem (2)-(4) can be reduced to a variational inequality:
freedom model.

A preliminary 2D code was developed. The obtained results a(p,v—¢) 2 l(v—¢) Vv € K, (5)
are compared with semi-analytical solution [4]; good agreRarex — Wl

i 1
ment is found. () is the convex set of elements Bf ' (£2)

which are negative or zero dz = 0}, andW () is defined

as:
1 The coupled problem
The rigid body problem oy d,. " v v v _ .,
gid body p W) { ey AR O

A three-dimensional ideal irrotational incompressiblenflo

is considered. The ||qU|d is |n|t|a”y at rest and OCCUpm tThe bilinear 'forn'n(.7 ) is derived from the Lap|acian opera-

lower half spacé2 = {(x,y,z) € R* x R} = {z < 0}. A tor and the linear forni(-) is given as
blunt rigid body starts to enter the liquid at time instaat 0.

A variational inequality approach has been first introduced i) = //{Z_O}(f(x’y) = #)) v dx dy. (7)
in [3]. A reader may refer to [3] and [1] for further details

about the variational inequality formulation of the rigiddy "€ variational inequality (5) can t?e reduced to a well-pose
impact problem. constrained minimization problem:
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The hydro-elastic problem Time discretization

For the problem of flexible structure impact the body bountimplicit scheme is used to discretize equation (11) in time:
ary condition in (2) takes the forr% = f(X,y)+w(X,y,t)—

h(t), wherew(x,y,t) is the normal deflection of the struc- nal n n1

ture (see figure 1). Inequality (4) is written now %%‘ < M(W — 2W2 W ) + K(
f(X,y) +w(X,y,t) — h(t) along the liquid surface = 0. At ol ogn 4 g

- pR
i} PR( INE

Wn+1+Wn71
— )
)+ O(A), (12)

where¢™ = ®(W™). This scheme keeps the problem cou-
pled after the discretization and it is unconditionallybétsin
time for uncoupled problems, whenis independent o#V.
Searching for the unknowW ™! and ¢"*!, one assumes
that the solution is already known at the previous time steps
X With G" = M(2W™ — W™ 1) + pR(2¢" — ¢"~1) —
1 APK(W" 1) equation (12) is written as:

Figure 1:water impact for a flexible structure 1 " n
(M + §At2K)(W T =G" — pR(p™ ). (13)

Itis important to notice that the timeplays a role of parame-Note that equation (13) does not require calculations of the
terin (2) - (4). Therefore, even in the case of elastic stm&ct hydrodynamic loads acting on the structure but only the dis-
impact, the displacement potential can be obtained at eafitement potential at each time instant. If it is possible t
time instant independently of the process history, if thecst gjstinguish the linear part of the operatbrand combine this
ture deflection is known. This is an important peculiarity Qfyear part with the left-hand side of equation (13), therare
the Wagner problem. If the deflection is prescribed, then thge at a stable and efficient numerical algorithm. Howeifer,
displacement potential can be obtained as the solutioneof e intends to use a commercial code for the structural anal-
constrained minimization problem (8), where now the Iineg-,tgis, which does not provide matricé§ and K as output,
form (7) must be presented as then this way is not practical and one is forced to deal with
uncoupled problem.

i) = //(f(x’wa(x’y’t) ) ety dxdy-G) 5 Numerical coupling scheme
{320}

] ] o The final aim of this study is to couple the Wagner model for
By using either finite-element method or 3D normal mogg,4rodynamic loads with a closed source professional finite

method or any (_)ther method to discretize the elastic de_‘mCtélement package. One of the limitations of these packages
of the penetrating structure, we represent the deflectitn Wi yhat one does not have access to the core of the software.
the help of a vectow (¢). For example, in the modal methodry;s is why it is not possible, or it would be very tough, to

- solve the structure and fluid problems simultaneously.
w(@,y,1) ; Wa(8)gn(@, ), Itis suggested to solve the coupled problem (13) by itenatio
We denoteV; " the deflection vector fos™ iteration at(n -+
wherey, (z,y) are the shape functions of the structure vibra)™ time step and approximate equation (13) as
tion. By using this discretization, one can present thetgmiu
of problem (8), (9) as

n 1 — n n
Wyl = (M+ SAPK) |G —pRo(I)(WpH)] (14)

¢ =P(W), (10)

. . . . n+1 __ n+1
where® is a nonlinear operator. Correspondingly, equation gy = (W), (15)
of the structure dynamics after discretization takes thenfo Equation (14) can be presented in abstract form

@ kw29, @ Wi = HW ™) (16

2 2

ot ot and the problem can be treated now as the fixed-point
whereM is the structural mass matrik is the stiffness ma- problem for the nonlinear operatsr.
trix, p is the liquid density an® is a linear operator, the form
of which is dependent on the way of the elastic deflection dBy using a closed source FEM package, the operétor
cretization. In order to obtain equation (11), the Berriouls realized as follows. We take valud™ and W™~!
equationp = —p¢y: has been used, whepéz, y, z,t) is the and evaluate thenitial data W(t,) and W;(t,), where
hydrodynamic pressure. Note that system (10) - (11) is cdy- = nAt. Then we take an approximate distribution of
pled. This is, the potentiat and the deflection vectW (¢) the displacement potentiaig“ and evaluate the pressure
should be obtained at the same time. over the structure with the help of the Bernoulli equation



p = —plpgTt — 20" + ¢""1]/At?. Next, we run a FEM lItis suggested to modify equation (16) as
code to compute the deflectioV} ™ at the time instant
tns1. After that we eva}uate next approximation of the wW + (1= w)WpH = H(Wp ), (19)
d|splacement potentiabi"™" by using (.15) a_nd_updgte theWherew # 0 is a parameter. Equation (19) gives rise to a
loads acting on the structure. Continuing with iteratioms, e ,
hope that the iterations converge to a deflecti™. After modified operatokl
the convergence achieved, we go to the next time instant.

n+1 w-—1 n+1 1 n+1 ! n+1
This is so-called decoupled algorithm. This algorithm hasWP*J'rl - TWPJF * EH(WP+ ) =H(W;™). (20)
limited applications in the problems of hydroelastic imipac , i
because in most interesting cases it does not converge. H':éq”rethe new operatdi’ we find
we described the algorithm in details because it is rather at
tractive (but wrong) and because in this algorithm the opera K =
tor H is defined. This definition will be used in the following “
analysis.

Mg

w—1-—

(21)

w
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Figure 2 plotsK’, as a function ofu.

3 Convergence of the algorithm K,

In order to study convergence of the algorithm, which is Hase
on equation (16), we consider a one-degree of freedomelasti
system. Physically, the system consists in a rigid bodyctwvhi

is submerged into an unbounded, ideal and incompressible
liquid and restricted by a spring with stiffneBsEquation of

the body motion has the fom -

mz + kx = —m,a, a7)
Wopt

Wmin

where the right hand side represents the hydrodynamic force
acting on the bodypn,, is the added mass of the body ar(d)

is the body displacement. Equation (17) has the same form as
(11), where the operatdr is linear now,®(W) = m,W/p,

W(t) has the only component denoted:4s). . Itis seen that there is a range.afwherek’, < 1. Moreover,
The operatoH dgflned in (14) gnd_ (16) for the m_ultl-degreegnere exists amptimal value w,,,, for which K/, = 0 and

of freedom nonlinear model, is linear for the linear SySteHPready the first iteration provides exact solution of the

Figure 2: K/, as a function ofs

(17): linear model problem. Numerical experience shows that
1 1 an optimalw, for which the convergence of iterations is
H(z) = —[G — mqz], ms=m + —kAt>. fastest ie. K/ is minimal), exists also for multi-degrees of
m 9 w g
S

) . ) ) ) freedom nonlinear problems, but naw,: is dependent on
Convergence of the iteration algorithm (16) is determingd khe solution and is different for different time steps.

the ratio ,
[H(z) - HE")|

K =
|z — 2’|

(18) This one-degree of freedom study lets us realize convergenc
difficulties and lets us find a solution to resolve them. This

If K < 1, the algorithm converges. In the case of equatigimplified study does not provide an absolute proof of con-

(17), we findK = m,/ms, which is less than unity if the vergence of algorithm (20). In the present study we believe

added mass of the body, is less than the body mass. that by introducing the parameterand choosing its optimal

Note that in (17) the inertia termmz and the hydrodynamicvalue at each time step, we can arrive at convergence of al-

force —m,& have the same form. The algorithm based guorithm (20) and reach good computational efficiency of the

equation (16) assumes that the inertia term provides more imamerical simulations.

portant contribution to the equation than the hydrodynamic

load term. This is true whem, < m. The latter inequal-

ity is usually valid in aeroelasticity due to small air depsi

In the problem of hydroelastic impact, one may expect that

the algorithm (16) converges at the very initial stage, when

the wetted area of the structure is small and, correspohyling

the added mass is smaller than the mass of the structure per

unit area. In the problems of strong interaction betwees-ela

tic structures and liquid, the added mass of the structure is

usually greater than the structural mass and the described a

gorithm diverges.



4 2D Numerical validation

T T
absolute error
relative error -------

A preliminary 2D numerical code was developed, in order to oo || 5
test the algorithm. The numerical scheme (20) for the cou- |
pled hydro-elastic impact problem was validated by using a_ o 4

semi-analytical solution obtained for symmetric wedge im-
pact problem [4].
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\Géﬁ ~ _5_ Figure 5: Absolute error (thick line) and relative error (dashed Jibe-
tween semi-analytical results in [4] and the variationaquality results, for

the point x=50 cm

Figure 3:The symmetric wedge
Conclusions

One considers a two-dimensional symmetric simply sup-
ported wedge with deadrise angle= 5 (see figure 3). The A numerical method for solving the coupled Wagner problem
thickness of the wedge plating is 2 cm and the length is 1 of.elastic structure impact has been proposed in this paper.
The wedge is made of steel with density 78@0'm3, Young The stability of the numerical scheme is studied, no aréfici
modulus210 - 10° Pa and Poisson ratio 0.3. Impact velocitgmoothing or filtering has been used to enforce convergence.
is 4 m/s and constant during the impact. The water densiThe comparison between the present numerical results and
is 1000kg/m?. semi-analytical solution shows good agreements.

This numerical method can be used for any finite element
The graph 4 presents the vertical deflections with respecstructure linearly elastic.

time for points situated at 50 cm of the wedge centre. A future work consists in three dimensional implementation
of this method and its coupling with a professional finite ele
et e+ ment package.
0.025
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Discusser - Y Kim:

Could you introduce your experience how to solve the temporal and spatial resolution difference?
The structural model, ie FEM model, has different resolutions of time and mesh with those of the
hydrodynamic model. According to my experience, to match these resolutions are not easy for some
problems. How about your experience?

Reply:

The structure is meshed without taking into account the fluid. The fluid and structure meshes are not
compatible at the interface. However, particular attention is paid to perform a very precise interpolation
between the two meshes. The size of the structural mesh provides limitations on the time step. The
fluid is assumed incompressible; a crucial point is that the expansion of the wet area must be well
discretized and resolved. This introduces more conditions on the time step and also on the fluid mesh.
Finally, we use a time step which satisfies all these conditions.

Discusser - K. Takagi:

If you use the wet mode instead of the dry mode, what would happen? This may solve the convergence
problem.

Reply:

Wet part of entering body is unknown. Just after impact instant the wet area of the body is small,
which makes use of the dry modes reasonable. When the body is already totally wet but still continue
to interact with the fluid, then the use of wet modes is very reasonable.

It may be possible to compute partially wet modes. But to do this, we need to know exactly the wet
area, which is part of the problem. So it is not possible to compute the exact partially wet modes,
since we don't know the exact position of the fluid. An other point is that these partially wet modes
should be recomputed at each time step.

However, it should be possible to approximate the partially wet modes (and to recompute them only
several times during the impact), and use these approximations to compute the hydro-elastic problem.
The convergence should then be improved.

Discusser - R.W. Yeung:

The boundary condition on the body neglects the tangential components on the surface of the body.
The theory is thus applicable to very small dead rise angle. The variational form cannot be extended
to include the more exact boundary condition, | presume. Is that so?

Reply:

The present variational formulation is based on Wagner formulation of impact problems. So it does
not seem possible at present to extend this formulation to more complex boundary conditions.



