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The fluid inside of moonpools, between the hulls of multi-
hull vessels and between ships in a side-by-side arrange-
ment in waves may show considerable piston-like resonant
motions. The possibility of trapped modes has relevance.
Examples on references on trapped modes are McIver et
al. (2003); McIver (2005); Kuznetsov et al. (2002). Our
present theoretical and experimental studies are limited to
two-dimensional flow. Small-amplitude vertical motions of
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Figure 1: General geometrical sketch (a) and definitions of
the dimensionless problem (b).

the two rigidly connected rectangular hulls in Fig. 1 (a) are
studied by linear potential flow theory. The geometrical di-
mensions are scaled by the horizontal width of the moon-
pool L1. The non-dimensional time isσ t whereσ is the

circular forcing frequency. Further, we defineΛ := σ2L1
g

whereg is the gravity acceleration. The heave amplitude
divided byL1 is denotedε.
Because of theOz-symmetry only fluid motions in the left
to theOz-axis are considered as shown in Fig. 1 (b). The
fluid domainQ0 is divided into four subdomainsI , II , III
and IV by auxiliary interfacesT1, T2 and T3 as shown in

Fig. 1 (b). The velocity potential is expressed as

ϕ(1)(x,z)cost + ϕ(2)(x,z)sint. (1)

Further, pursuing independent boundary value problems in
these subdomains, we define the Neumann traces ofϕ(i) on
Tj , j = 1,2,3, i = 1,2 as follows

T1 :
∂ϕ(i)

∂x
(−b,z) = w(i)

1 (z) −h < z< −d, (2a)

T2 :
∂ϕ(i)

∂x
(− 1

2,z) = w(i)
2 (z) −h < z< −d, (2b)

T3 :
∂ϕ(i)

∂z
(x,−d) = w(i)

3 (x) − 1
2 < x < 0. (2c)

Green functions are derived for each subdomain. The veloc-
ity potentials forI , II , III andIV are separately expressed

in terms of distributions ofw(i)
j and the appropriate Green

function alongTj . Integral equations with respect tow(i)
j

follow by using the Dirichlet transmission conditions onTj .
In addition, the continuity of fluid mass is satisfied sepa-
rately for domainsII and III . An inhomogeneous system
of ten integral equations is the result. This is solved by a
Galerkin method by expressing

w(i)
1 (z) =

N1

∑
j=1

α(1,i)
j (z)v(1)

j (z); w(i)
2 (z) =

N2

∑
j=1

α(2,i)
j (z)v(1)

j (z)

w(i)
3 (x) =

N3

∑
j=1

α(3,i)
j (x)v(2)

j (x), i = 1,2,

(3)

where{v(1)
i } and{v(2)

i } are two complete systems of func-
tions on(−h,−d) and(− 1

2,0), respectively. The result is
a system ofM linear algebraic systems with respect toM
variables, i.e

PB = εb. (4)

The matrixP has the following structure

P =

∥

∥

∥

∥

∥

∥

∥

∥

D -p
0

p
0 D

∥

∥

∥

∥

∥

∥

∥

∥

, (5)

where the two sub-matricesD andp have dimensions(M
2 )×

(M
2 ) andN1 ×N1, respectively.N1 is the number of terms



used in the approximation ofw1. The limited space does
not permit a detailed explanation of the sub-matrices.
Convergence and accuracy of the Galerkin method depend

on the functional sets{v(1)
j (z)} and{v(2)

j (x)}. Because the
Neumann traces onTk, k = 1,2,3 are singular at the corner
points of the rectangular body, the use of a smooth func-
tional basis, i.e. trigonometrical or polynomial, may cause
weak convergence. On the contrary, accounting for the
singular character of the traces improves the convergence
(Porter & Evans, 1995; Kuznetsov et al., 2001). The fol-
lowing functional sets

v(1)
j (z) =

1

r(1)
j

(

1−

(

z+h
h−d

)2
)mj

;

v(2)
j (x) =

1

r(2)
j

(1− (2x)2)mj , j ≥ 1,

(6)

with mj ∈
{

± 1
3 + j −1, j ≥ 1

}

are therefore used. Herer(1)
j

andr(2)
j are normalization factors.

The functional basis (6) makes it possible to get analytical
expressions for elements ofP andb in terms of the gamma-
and Bessel functions. The solution guarantees a fast conver-
gence and provides about 5-7 significant figures with only
5-6 basis functions on each transmission interface. The ac-
curate prediction of the singularities at the corners is also
essential in matching with the local vortex shedding model
by Graham (1980).
Non-unique solutions of the boundary value problem for a
certain value ofΛ is associated with existence of trapped
mode solutions, which appear as non-trivial solutions of the
corresponding homogeneous problem.
A necessary existence condition for the piston-like trapped
mode solution is

det||D(Λ∗)|| = 0 for a certain Λ∗ ∈
(

0, π
2 tanh

(π
2

))

.

(7)
This condition yields a non-trivial solution of the homoge-
neous problem

D(Λ∗)B1 = 0. (8)

If w(1)
1 (z), i = 1,2, determined by this non-trivial solution

satisfy the conditions of zero far-field wave amplitudeA
(1)

0
and non-zero flux over the moonpool, the problem has the
piston-like trapped mode at the “resonant frequency”Λ∗.
After identifying the resonant frequenciesΛ∗ and finding
non-trivial solutions from (8), we can numerically detect
geometrical configurations withB, h and d for which (8)
implies the existence of a trapped mode. By defining the
ratio

J (d,B,h) = A
(1)

0 /A
(1)

1 , (9)

whereA (1)
1 6= 0 is the space-averaged wave amplitude in the

moonpool, we conducted tedious numerical studies to find
the trapped modes, i.e.(d,B,h) for which J = 0. These
showed that theJ ’s are finite and positive, much larger
that the maximum numerical error estimated as≤ 10−6,
at least, for geometric shapes related to our experimental

cases. Typical behaviour ofJ versus the draughtd for dif-
ferent values ofB is illustrated in Figs 2 (a,b).J tends to
zero only asd → h, but this case is not of our present inter-
est. In contrast, whend → 0 andB → 0 (thin structure or
wide moonpool in deep water), the transcendental equation
(7) may have no roots, i.e. no resonant frequencies. The
last fact is demonstrated in Figures 2 (a,b) forB = 0.2 by
the existence of a finite interval between the graphs and the
vertical axis.
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Figure 2: The ratioJ defined by (9) versus the draught
d for h = 5.72222 (a) andh = 2.86111 (b) and differ-
ent breadthsB of the rectangular side hulls. Solid lines
correspond to model tests. All lengths are normalized by
L1.

Model tests
Moonpool model tests have been performed in a wave flume
that is 0.6m wide and has a water depth of 1.03m and a
total length of 13.5m. The flow-field is approximately two-
dimensional. The width of the two rectangular parts of the
ship hull,B, is 0.36m.
Figure 3 shows the position of the wave probes, position
gauges and accelerometers in one of the test configurations.
A total of twelve wave probes were used, denoted w1-w12.
For most of the forcing frequencies, some initial beating
occurs in the moonpool. The free surface elevation in-
side the moonpool reaches the absolute maximum and min-
imum in the middle, but the difference in level across the
moonpool is small. The minimum amplitude for radiated
waves is observed for frequencies slightly higher than the
frequency causing the maximum free surface elevation in-
side the moonpool. The measured steady state free surface
elevation is in general quite sinusoidal. Vortex shedding at
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Figure 3: Instrumentation when the moonpool width and
depth areL1 = 180mm andd = 180mm, respectively. All
measures in (mm).

the right corners of the rectangular ship hulls was clearly
observed for a large free surface motion in the moonpool.

The following sets of model tests were performed
Case 1: h = 5.72222, d = 1 andB = 2 with the two non-

dimensional heave amplitudesε = 0.013889 and
0.027778;

Case 2: h = 5.72222, d = 1.5 andB = 2 with the same
two heave amplitudes and

Case 3: h = 2.86111, d = 0.5 andB = 1 with only one
non-dimensional heave amplitudeε = 0.00694.

Comparison with experiments
The theoretical and experimental piston mode resonance
frequency compares well. The experiments are equal to
our theory in Case 1 (Fig. 4a), while there are small dif-
ferences in Case 2 and 3, which are hardly visible in Fig.
4. The valueΛ∗ was weakly dependent on the forcing am-
plitude. The agreement with the theory by Molin (2001) is
illustrated in Fig. 4. The discrepancy increases when the
draught is small relative to the moonpool width.

Measurements of the piston-like space-averaged wave el-
evations in the moonpool and far away from the struc-
ture (henceforth, we focus only on measuring probe w11)
make it possible to validate the linear theoretical predic-
tions. Both the experimental and theoretical values are
scaled by the forcing amplitude. The experimental and
theoretical phase-lagsθm andθp relative to the heave mo-
tion are also evaluated. Results are presented in Fig. 5.
The agreement between the experiments and the linear the-
ory is reasonable for the smallest heave amplitudes (Fig.
5). A discrepancy for the maximum response (resonance at
Λ = Λ∗) is partly due to vortex shedding at the corners of
the rectangular hulls. An interesting point is the behaviour
of the experimental values atj1, where, we believe, other
nonlinearities than due to the vortex shedding yield a jump
in the response curves. This jump changes the structure of
the branching, which becomes (as shown by arrows) paral-
lel to the linear prediction. As shown in Fig. 5, increasing
forcing amplitude decreases the scaled experimental ampli-
tudes, so that jump-like behaviour atj1 changes to a “shelf”
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Figure 4: Theoretical prediction of the resonance frequency
Λ∗ (root of (7)) versusd (solid line) and the estimate
by Molin (2001) (dotted line). The part (a) is related to
Cases 1-2 (h = 5.72222 andB = 2), but (b) implies Case 3
(h = 2.86111 andB = 1). The square and triangle centres
mark the experimental values ofΛ∗ for lower forcing am-
plitudes (ε = 0.013889 in (a) andε = 0.006944 in (b)) and
larger forcing amplitudes (ε = 0.02778), respectively.

on the response curves.
Cases 1 and 2 indicate that, to some extent, the agreement
may be improved if damping due to vortex shedding is
accounted for. Case 3 in Fig. 6 presents elevation mea-
surements that cannot be fully explained by vortex shed-
ding. The experiments show a higher resonant response
than found by our theory. A drifts of the maximum re-
sponse is seen. A similar but smaller drift was also ob-
served for Case 2. In contrast to the “smooth” branches of
the linear theory, the experiments in Case 3 identify a jump
j4 to the left of the primary resonanceΛ∗. A novelty is
also a jump to the right of theΛ∗, occurring atj3. Figure 7
shows the time record of the measured elevation at w1 and
w5 for Case 3 at the pointj3 in Fig. 6. The unfiltered signal
is periodic, but clearly non-sinusoidal due to the presence
of higher harmonics. A band-pass filtering shows the pro-
nounced harmonic component with a frequency four times
the forcing frequency. A logical explanation of this higher
harmonic may be internal (secondary) resonance between
the piston-like modeΛ∗ = 0.8041 and a sloshing mode hav-
ing the non-dimensional resonant frequenciesΛi , i ≥ 1. Be-
cause the piston-like mode may create only a parametric-
type resonance for the sloshing modes and the resonant
sloshing frequencies always are quite larger than the lowest,
piston-likeΛ∗, the secondary resonance in terms of a non-
linear theory, which produceslσ , l = 1,2, . . .-harmonics, is
predictable whenlσ/σi , l ≥ 1, i ≥ 1 is an integer number.
Thinking in terms of the lowestl andi and using estimates
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Figure 5: Case 1 withB = 2, d = 1 andh = 5.72222. The-
oretical and experimental amplitudes of the piston-like mo-
tions and the wave elevation at w11 (scaled by the forc-
ing amplitude) versusΛ are presented in (a,c). Theoretical
values for the moonpool are space-averaged. The theoret-
ical and experimental phase-shiftsθm andθp are given in
(b). Parts (a,b) compare theory and experiments for the ex-
perimental forcing amplitudeε = 0.013889, but (c) imply
ε = 0.027778.

of the resonant sloshing frequencies by Molin (2001), we
find thatlσ/σi ≈

√

l/2i for Λ∗ in Case 3. Possible “reso-
nance” combinations arel = 2, i = 1, l = 4, i = 1, l = 4, i = 2
etc. Special studies are needed to select from these combi-
nations an actual secondary resonance.
Our next step in the theoretical analysis is to incorporate the
local vortex shedding model by Graham (1980).
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Discusser - D.V. Evans:

Why do you need four regions? Surely regions III and IV can be regarded as a single region similar to

region I but of finite width?

The problem of two thin barriers has been proved to be unique by Nick Kuznetsov so it would be

surprising if the problem of two thick barriers which we have here were non-unique which perhaps

explains why you were unable to find any trapped modes.

Reply:

If we want to consider ONLY linear problem, you are right. However, ignoring decomposition in III

and IV implies zero-Neumann conditions that are not analytically satisfied on the vertical wall of the

hull. Our experience with sloshing says that the asymptotic modal technique is then invalid. One

simple reason is that we should calculate higher derivatives of linear solution at the wall and the error

will dramatically increase (our linear approximation is found by a variational scheme). However, these

higher derivatives determine the hydrodynamic coefficients near nonlinear terms.

Additional arguments, as we found after working with vortex-shedding analysis, this decomposition is

necessary for Graham’s technique with a local vortex model. If we do not separate III and IV, the

maximum error will be expected at the corner (for zero-Neumann condition). This means that our

predictions of the vortex shedding will be very-very rough.


