Two-dimensional resonant piston-like sloshing in a moonpool
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The fluid inside of moonpools, between the hulls of multkig. 1 (b). The velocity potential is expressed as
hull vessels and between ships in a side-by-side arrange- @ @ _
ment in waves may show considerable piston-like resonant ¢ (x,z)cost + ¢ (x,2) sint. 1)

motions. The possibility of trapped modes has relevance. h ing ind dent bound | bl i
Examples on references on trapped modes are Mclvef Hfther, pursuing independent boundary value problems in

al. (2003); Mclver (2005); Kuznetsov et al. (2002). odpes.e_subdomars,we dfeflilne the Neumann tracg$ o6n
present theoretical and experimental studies are Iim'uedTﬂ’ 1=1,2,3,1=1,2as follows

two-dimensional flow. Small-amplitude vertical motions of
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H B L B Green functions are derived for each subdomain. The veloc-
ity potentials forl, 11, 111 andIV are separately expressed
in terms of distributions ow§'> and the appropriate Green
function alongT;. Integral equations with respect wﬁi)

follow by using the Dirichlet transmission conditionsdn
2, Z In addition, the continuity of fluid mass is satisfied sepa-
(b) rately for domaindl andlll. An inhomogeneous system
of ten integral equations is the result. This is solved by a
Galerkin method by expressing
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Figure 1: General geometrical sketch (a) and definitions‘§fere{vi™ } and{v;"’} are two complete systems of func-
the dimensionless problem (b). tions on(—h,—d) and(—3,0), respectively. The result is
a system oMM linear algebraic systems with respecthio

the two rigidly connected rectangular hulls in Fig. 1 (a) aMriables, i.e

studied by linear potential flow theory. The geometrical di- ZB=¢b. (4)
mensions are scaled by the horizontal width of the moomhe matrix2 has the following structure
pool L;. The non-dimensional time igt whereo is the

circular forcing frequency. Further, we defife:= oL
whereg is the gravity acceleration. The heave amplitude
divided byL1 is denotect.

Because of th®©zsymmetry only fluid motions in the left
to the Ozaxis are considered as shown in Fig. 1 (b). The
fluid domainQy is divided into four subdomainis 11, 111 where the two sub-matric@andp have dimensiongy ) x
and IV by auxiliary interfacesl;, T, and Tz as shown in (%) andN; x Ny, respectively.N; is the number of terms




used in the approximation af;. The limited space doescases. Typical behaviour gf versus the draugldatfor dif-

not permit a detailed explanation of the sub-matrices.  ferent values oB is illustrated in Figs 2 (a,b),# tends to
Convergence and accuracy of the Galerkin method deperdo only asl — h, but this case is not of our present inter-
on the functional Set$v ( )} and{v ( )} Because the est. In contrast, whed — 0 andB — 0 (thln structure or
Neumann traces ofy, k 1,2,3 are smgular at the corneide moonpool in deep water), the transcendental equation
points of the rectangular body, the use of a smooth furlé) may have no roots, i.e. no resonant frequencies. The
tional basis, i.e. trigonometrical or polynomial, may caugast fact is demonstrated in Figures 2 (a,b) Bo= 0.2 by
weak convergence. On the Contrary, accounting for tHLE existence of a finite interval between the graphs and the
singular character of the traces improves the convergeMegical axis.

(Porter & Evans, 1995; Kuznetsov et al., 2001). The fol-
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withmj € {+1+j—1,j > 1} are therefore used. HerEeU

anolr}2> are normalization factors. 0
The functional basis (6) makes it possible to get analytical d
expressions for elements 6% andbin terms of the gamma- 16—
and Bessel functions. The solution guarantees a fastconver 1.4 ‘-
gence and provides about 5-7 significant figures with only , , |
5-6 basis functions on each transmission interface. The ac-
curate prediction of the singularities at the corners is als _
essential in matching with the local vortex shedding modeJI 081 |- ™)
by Graham (1980). 06"
Non-unigue solutions of the boundary value problem for a

) ) : ) ; 0.4+
certain value ofA\ is associated with existence of trapped
mode solutions, which appear as non-trivial solutions efth ~ 02| »
corresponding homogeneous problem. 0 ‘ : ‘ : -
. . . . 0 0.5 1 15 2 25
A necessary existence condition for the piston-like trappe d

mode solution is
T Figure 2: The ratio,# defined by (9) versus the draught
det|D(A.)|| =0 foracertain A, € (0.ftanh(3)). dforh = 572222(a)anh = 286111 (b)and differ-
(7) entbreadths of the rectangular side hulls. Solid lines

This condition yields a non-trivial solution of the homogecorrespond to model tests. All lengths are normalized by

neous problem Li.
D(A.)B1 = 0. ®)
) . . _ o ~ Model tests
If wy”'(2), i = 1,2, determined by this non-trivial solutionMoonpool model tests have been performed in a wave flume

satisfy the conditions of zero far-field wave amplitui¢” ~that is 0.6m wide and has a water depth of 1.03m and a
and non-zero flux over the moonpool, the problem has tteéal length of 13.5m. The flow-field is approximately two-
piston-like trapped mode at the “resonant frequengy”  dimensional. The width of the two rectangular parts of the
After identifying the resonant frequenciés and finding ship hull,B, is 0.36m.
non-trivial solutions from (8), we can numerically detedtigure 3 shows the position of the wave probes, position
geometrical configurations witB, h andd for which (8) gauges and accelerometers in one of the test configurations.
implies the existence of a trapped mode. By defining thetotal of twelve wave probes were used, denoted wl-w12.
ratio For most of the forcing frequencies, some initial beating
Z(d,B,h) :Jz%(l)/gz%(l), (9) occurs in the moonpool. The free surface elevation in-
side the moonpool reaches the absolute maximum and min-
whered # 0is the space-averaged wave amplitude in tiraum in the middle, but the difference in level across the
moonpool we conducted tedious numerical studies to finmtbonpool is small. The minimum amplitude for radiated
the trapped modes, i.€d,B, h) for which _# = 0. These waves is observed for frequencies slightly higher than the
showed that the #’s are finite and positive, much largefrequency causing the maximum free surface elevation in-
that the maximum numerical error estimated<ad0°°, side the moonpool. The measured steady state free surface
at least, for geometric shapes related to our experimergigvation is in general quite sinusoidal. Vortex shedding a
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Figure 3: Instrumentation when the moonpool width and” 1}
depth ard_; = 180mm andd = 180mm, respectively. All

measures in (mm). 05¢

Case 3
the right corners of the rectangular ship hulls was clearly © 05 1 15 2 25
observed for a large free surface motion in the moonpool. d

The following sets of model tests were performed ) o
Case 1: h=5.72222 d =1 andB = 2 with the two non- Figure 4: Theoretical prediction of the resonance frequenc

dimensional heave amplitudes= 0.013889 and N, (root of (7)) versusd (solid line) and the estimate

0.027778: by Molin (2001) (dotted line). The part (a) is related to
Case 2: h=5.72222 d = 1.5 andB = 2 with the same Cases l-Zf(z 5.72222 andB = 2), but (b) implies Case 3

two heave amplitudes and (h=2.86111 andB = 1). The square and triangle centres
Case 3: h=286111 d = 0.5 andB = 1 with only one mark the experimental values 64, for lower forcing am-

non-dimensional heave amplitude= 0.00694. plitudes € = 0.013889 in (a) and = 0.006944 in (b)) and

. . . larger forcing amplitudess(= 0.02778), respectively.

Comparison with experiments

The theoretical and experimental piston mode resonapgeine response curves.

frequency compares well. The experiments are equaldgses 1 and 2 indicate that, to some extent, the agreement
our theory in Case 1 (Fig. 4a_), while there are sme}ll d!lfﬁay be improved if damping due to vortex shedding is
ferences in Case 2 and 3, which are hardly visible in Figecounted for. Case 3 in Fig. 6 presents elevation mea-
4. The value\. was weakly dependent on the forcing amsrements that cannot be fully explained by vortex shed-
plitude. The agreement with the theory by Molin (2001) i§ing. The experiments show a higher resonant response
|IIustrateq in Fig. 4. _The discrepancy increases when $Hen found by our theory. A drifs of the maximum re-
draught is small relative to the moonpool width. sponse is seen. A similar but smaller drift was also ob-
Measurements of the piston-like space-averaged wavesgrved for Case 2. In contrast to the “smooth” branches of
evations in the moonpool and far away from the struthe linear theory, the experiments in Case 3 identify a jump
ture (henceforth, we focus only on measuring probe wljl) to the left of the primary resonanck.. A novelty is
make it possible to validate the linear theoretical predialso a jump to the right of thA,, occurring atjs. Figure 7
tions. Both the experimental and theoretical values aleows the time record of the measured elevation at wl and
scaled by the forcing amplitude. The experimental ameb for Case 3 at the poing in Fig. 6. The unfiltered signal
theoretical phase-lagd, and 6, relative to the heave mo-is periodic, but clearly non-sinusoidal due to the presence
tion are also evaluated. Results are presented in Fig.obhigher harmonics. A band-pass filtering shows the pro-
The agreement between the experiments and the linear thminced harmonic component with a frequency four times
ory is reasonable for the smallest heave amplitudes (Rige forcing frequency. A logical explanation of this higher
5). A discrepancy for the maximum response (resonancdéatmonic may be internal (secondary) resonance between
N = A,) is partly due to vortex shedding at the corners tffie piston-like modé.. = 0.8041 and a sloshing mode hav-
the rectangular hulls. An interesting point is the behawioing the non-dimensional resonant frequendigd > 1. Be-

of the experimental values §f, where, we believe, othercause the piston-like mode may create only a parametric-
nonlinearities than due to the vortex shedding yield a juntype resonance for the sloshing modes and the resonant
in the response curves. This jump changes the structureslohing frequencies always are quite larger than the fpwes
the branching, which becomes (as shown by arrows) pargikton-like ., the secondary resonance in terms of a non-
lel to the linear prediction. As shown in Fig. 5, increasiniinear theory, which producés, | =1,2,...-harmonics, is
forcing amplitude decreases the scaled experimental ampiedictable wheho /gi, | > 1, i > 1 is an integer number.
tudes, so that jump-like behaviourjatchanges to a “shelf” Thinking in terms of the lowedtandi and using estimates
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Figure 5: Case 1 witB — 2,d — 1 andh = 5.72222. The- "\ — 0:8041(0.745H2).
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Discusser - D.V. Evans:

Why do you need four regions? Surely regions Il and IV can be regarded as a single region similar to
region | but of finite width?

The problem of two thin barriers has been proved to be unique by Nick Kuznetsov so it would be
surprising if the problem of two thick barriers which we have here were non-unique which perhaps
explains why you were unable to find any trapped modes.

Reply:

If we want to consider ONLY linear problem, you are right. However, ignoring decomposition in Il
and IV implies zero-Neumann conditions that are not analytically satisfied on the vertical wall of the
hull. Our experience with sloshing says that the asymptotic modal technique is then invalid. One
simple reason is that we should calculate higher derivatives of linear solution at the wall and the error
will dramatically increase (our linear approximation is found by a variational scheme). However, these
higher derivatives determine the hydrodynamic coefficients near nonlinear terms.

Additional arguments, as we found after working with vortex-shedding analysis, this decomposition is
necessary for Graham's technique with a local vortex model. If we do not separate Ill and IV, the
maximum error will be expected at the corner (for zero-Neumann condition). This means that our
predictions of the vortex shedding will be very-very rough.



