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Introduction

In this contribution we consider how flexural-gravity waves propagating on a thin elastic plate in
contact with an ideal fluid of constant finite depth interact with points which are constrained to
move via an impedance condition. The problem is designed to model a large floating offshore platform
which is either supported rigidly by a number of fixed columns to the sea bed, or tethered by extensible
mooring lines. Such problems may be of interest in the design of large floating structures currently
being considered and tested for use as floating offshore runways and oil storage facilities. The work
described here is an extension of the work presented at the last workshop by Evans & Meylan (2005).

Formulation of the problem

At rest, a thin elastic plate occupies the x, y plane with its lower surface coinciding with z = 0
and in contact with an ideal fluid which extends vertically through the depth −h < z < 0.

Linearised theory is used to describe the small-amplitude fluid motion which is defined by a velocity
potential Φ(r, z, t) with r = (x, y). Assuming time-harmonic motions of angular frequency ω allows
us to write Φ(r, z, t) = <{−iωφ(r, z)e−iωt}. Within the fluid Laplace’s equation is satisfied,

(

∆ + ∂2/∂z2
)

φ = 0, −h < z < 0, −∞ < x, y <∞ (1)

where ∆ ≡ ∂2/∂x2 + ∂2/∂y2 with the sea-bed condition ∂φ/∂z|z=−h = 0. The elastic plate has a
displacement given by <{u(r)e−iωt} which is connected to φ via the linearised kinematic condition

∂φ/∂z|z=0 = u(r) (2)

and through the time-harmonic equation of motion of the plate (modelled by Kirchhoff theory),

(D∆2 −mω2)u(r) = [p] = ρwω
2φ(r, 0) − ρwgu(r) (3)

after using the linearised Bernoulli equation for the jump in pressure across the plate, [p] ≡ [p]z=0−

z=0+ .
In the left-hand side of (3), D = Ed3/(12(1 − ν2)) is the flexural rigidity of the plate, expressed in
terms of its Young’s modulus, E, the thickness d and Poisson’s ratio ν, whilst m = ρpd is the mass
per unit area on the plate, expressed in terms of the plate density, ρp. On the right-hand side of (3),
ρw is the water density and g is gravitational acceleration.

Combining (2) and (3) to eliminate u(r) and then non-dimensionalising variables (e.g. Williams &
Squire (2004)) allows the equation on z = 0 to be written in terms of a single dimensionless parameter

(∆2 +$)∂φ/∂z|z=0 − φ(r, 0) = 0. (4)

with

$ = ω∗−8/5(1 −m∗ω∗2), m∗ =
ρpd

ρwL
, ω∗ = (L/g)1/2ω

and L = (D/ρwg)
1/4, whilst lengths have been scaled by L′ = Lω∗−2/5. Equations (1), (2) remain

unchanged by the non-dimensionalisation. The parameter $ captures both the frequency of motion
and the competition between inertia and hydrodynamic forces. For example, when $ < 0, the effect
of the water is negligible and, conversely, for large $ the inertial effects of the plate can be ignored.
The non-dimensional depth, h∗ = h/L′ is such that h∗ < 1

2 is well-approximated by shallow water
theory and h∗ > 4 is effectively infinite depth.

In the presence of wave motion on the elastic plate, the constraint of a single point implies the
application of a time-harmonic point force, F say, at that point (the origin say) which is included as



an extra pressure term Fδ(x)δ(y) on the right-hand side of (3). The resulting non-dimensionalisation
of the plate equation gives rise to a dimensionless force F ∗ = Fω∗−4/5/(ρwgL

3) and (4) is replaced by

(∆2 +$)u(r) − φ(r, 0) = F ∗δ(x)δ(y).

If the point is to be fixed, then F ∗ is determined by application of u(0, 0) = 0. If the point is
constrained to move by the attachment of a point mass M , and a spring of spring constant κ then
F = (Mω2 −κ)u(0, 0). In dimensionless variables, F ∗ = µu(0, 0), where µ = ω∗−4/5(M∗ω∗2 −κ∗) and
M∗ = M/(ρwL

3) and κ∗ = κ/
√
ρwgD are dimensionless mass and spring constants. Letting |µ| → ∞

has the same effect as holding the point fixed. Henceforth, asterisks will be dropped.
The solution to the problem of the scattering of an incident wave (described by the potential φi

and having displacement ui) by a single constrained point, is given by

φ(r, z) = φi(r, z) + FG(r, z; 0, 0), implying u(r) = ui(r) + Fg(r; 0, 0) (5)

where g = ∂G/∂z|z=0 and G(r, z; r′) is the Green function for a plate over water, satisfying

(∆2 +$)g(r; r′) −G(r, 0; r′) = δ(r − r′)

in addition to Laplace’s equation and the bottom condition. It can be shown that

g(r; r′) =
i

4

∞
∑

m=−2

τmH
(1)
0 (kmρ), τm =

[Y ′

m(0)]2

Cm
(6)

whereH
(1)
0 (z) is the first-kind Hankel function, ρ = |r−r′|, and Ym(z) = cosh km(z+h) are depth eigen-

functions which arise when considering separation solutions. Also Cm = 1
2 [h+ (5k4

m +$) sinh2 kmh],
whilst km (m ≥ −2) are the roots of the dispersion relation

(k4
m +$)km tanh kmh− 1 = 0. (7)

We define k0 as the unique positive real root of (7), representing travelling waves of wavelength
λ = 2π/k0, whilst km, m ≥ 1 represent the sequence of pure imaginary roots with positive (and
increasing with m) imaginary parts. Two generally complex roots exist in the upper-half plane and
are denoted by k−1 and k−2 = −k−1.

The displacement due to the incident wave, introduced in (5), travelling at an angle ψ to the
positive x-axis, can now be written ui(r) = exp{ik0(x cosψ + y sinψ)}.

Despite the apparent log-singularity in g in (6), various relations, including crucially that
∑

m τm =
0, can be used to show that the Green function is bounded at the origin. In fact, as ρ→ 0,

g(r; r′) ∼ C +
ρ2 log ρ

8π
+O(ρ2), where C = − 1

2π

∞
∑

m=−2

τm lnkm. (8)

Using (8) in (5) with the impedance relation F = µu(0, 0) gives u(0, 0) = 1 + µu(0, 0)C which solves
to give u(0, 0) = 1/(1 − Cµ) and hence the plate displacement everywhere is given by

u(r) = ui(r) +
µ

1 − Cµ
g(r; 0, 0).

Diffraction of incident waves by an arbitrary arrangement of points

The extension from the scattering by a single point at the origin to the scattering by N points
located at r = rn on the plate and constrained to move via an impedance µn is trivial, the general
solution being given by superposition,

u(r) = ui(r) +
N

∑

n=1

Fng(r; rn) (9)



 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0  0.5  1  1.5  2  2.5

(a)

F̃

$

a=1.5

1.6

1.7

1.8

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0  0.5  1  1.5  2  2.5

(b)

F̃

$

a=3.2

3.4

3.6

3.8

Figure 1: Non-dimensional force on the pinned point at (−a, a) against $ with h = 1 and ψ = 45◦
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Figure 2: An example of maximum amplitude of displacement on the plate at near-resonance.

The external force at the nth pin is Fn which, by definition, satisfies Fn = µnu(rn), n = 1, 2, . . . , N
and so we obtain the system of equations

Fm = µmui(rm) + µm

N
∑

n=1

Fng(rm; rn), m = 1, 2, . . . , N

that determine Fm. A good example of the interesting results that can be found is given by choosing
N = 4 fixed points (µ−1

n = 0) arranged at the vertices of a square (rn = (±a,±a), say). Figure 1
shows the force (non-dimensionalised w.r.t. the force on an isolated pinned point) on one of the points
as $ varies for ψ = 45◦, with h = 1 and for a set of values of a. In terms of dimensional quantities,
the choice E = 5GPa, ρp = 922.5kg/m3, ρw = 1025kg/m3, g = 9.81m/s2, ν = 0.3, d = 1m, gives
dimensional values (in metres) of point separation, water depth and wavelength at each of the four
peaks in figure 1(a) as (34, 11, 70), (44, 14, 93), (52,15,112), (58,16,125) and in figure 1(b), as (54,9,52),
(84,14,82), (104,14,100), (118,15,115). The peak in the force is associated with a near-resonance in
which the wavelength is approximately half – or equal to – the spacing of the points (see figure 2).

Infinite periodic arrays of points

For large, but finite regular arrays of points, it proves useful to consider problems involving infinite
periodic arrays, where further analytic progress is possible. Following (9) we write, for a single periodic
array of points,

u(r) = ui(r) +

∞
∑

n=−∞

Fng(r; rn), where Fn = µu(rn) and rn = (na, 0), n ∈ Z. (10)

The imposed periodicity in x allows us to invoke Floquet theory which states that there can only be
a change in phase in the solution, being equal to that of the incident wave, across successive periods.
Hence, Fn = Fn−1σ, where σ = eiα0a and α0 = k0 cosψ and it follows that Fn = σnF0. Then, from
(10) with r = rm, m ∈ Z it is not difficult to show that that

F0 = µ/(1 − µS), where S =
∞

∑

n=−∞

σ−ng(na, 0; 0, 0).



In its present form with g given by (6), the series for S converges slowly, but use of an integral
representation of the Hankel function and Poisson’s summation formula allows us to write S as

S(k0, α0, a) =
1

2a

∞
∑

n=−∞

∞
∑

m=−2

τm
λmn

, where λ2
mn = α2

n − k2
m, αn = α0 + 2nπ/a. (11)

This approach allows us to consider scattering of waves by an infinite periodic array of points, and
determine the reflection and transmission coefficients. It turns out that under certain circumstances
(examples will be given at the Workshop) total reflection from the infinite array is possible.

Alternatively, one can consider so-called Rayleigh-Bloch waves in which the incident wave is absent,
and the frequency operates in a range where radiation of energy from the array is prohibited. The
resulting waves are local to the array and determined simply by satisfying

1/µ = S(k0, α0, a) (12)

with α0 > k0 ensuring that this is a real condition. It is necessary to consider only values of α0 ∈
[0, π/a] since, for m ∈ Z, S(k0, 2mπ/a + α0, a) = S(k0, α0, a) = S(k0, 2π/a − α0, a). Interestingly, in
order to obtain solutions of (12), we must have µ−1 6= 0, implying that pinned points do not support
Rayleigh-Bloch waves. Also, the presence of Rayleigh-Bloch waves leads to large near-resonant motions
near the centre of a long finite array of constrained points, in much the same way as observed by Maniar
& Newman (1997) for long arrays of cylinders excited by surface gravity waves on water.

Perhaps a more realistic situation is one where the elastic plate is constrained to move on a finite
rectangular grid. It now proves instructive to consider a doubly-infinite periodic array of points on an
elastic plate, each constrained to move by the same impedance condition. There can be no incident
wave for such a problem and it makes sense only to consider if waves are able to propagate without
attenuation throughout the array. That is, we seek pass-band lattice modes (well-known in other
wave theories, such as optics, crystallography etc). The constraints are placed on the rectangular grid
r = rp = (pa, qb), p = (p, q) ∈ Z

2. Applying Bloch-Floquet theory implies that for r ∈ R
2,

u(r + rp) = u(r)exp(iα.rp), p = (p, q) ∈ Z
2 (13)

where α = (α0, β0) and α0, β0 are Bloch wavenumbers in the x, y directions respectively. It follows
that

u(r) =
∑

q

g(r; rq)exp(iα.rq),

satisfies (13) where q = (r, s) ∈ Z
2 and g(r; r′) is the Green function defined by (6). Application of

the impedance condition at each point implies u(rp) = u(0, 0)exp(iα.rp)/µ whilst u(0, 0) = 1 can be
chosen without loss of generality, whence

1/µ = S, where S =
∑

p

g(rp; 0)exp(−iα.rp).

Again, integral representations and Poisson’s formula leads us to the rapidly convergent expression

S =
1

2a

∞
∑

p=−∞

∞
∑

m=−2

τm
sinhλmpb

λmp(cosh λmpb− cos β0b)
,

where λmp and αp are defined by (11). It should be noted that S is always real-valued for all values
of k0. Results showing the location of pass-bands and stop-bands and their effect upon finite arrays
will be presented at the Workshop.
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Discusser - M.H. Meylan:

Why is this problem simpler than bottom mounted cylinders?

Reply:

Each scatterer is a single point on the elastic plate, as opposed to a cylinder of non-zero radius. This

means that the contribution to scattering by each point is a single Green function. The analysis for

multiple scattering thus becomes as simple as one can imagine, but many of the features displayed by

scattering on elastic plates are shared by scattering by cylinders which makes elastic plate problems a

useful tool.

Discusser - R. W. Yeung

This is a very compact analysis of a plate and fluid interaction. What is not too obvious is the source

of such plane elastic waves. If the elastic plate is excited by ocean waves, the incident wave from the

plate edges would not be planar.

Reply:

In reality, there may be some boundary between the free surface of the fluid and the elastic plate.

Then the flexural waves on the elastic plate will have originated from the ocean waves. The current

analysis owes its elegance and simplicity to the fact that we neglect the boundary of the elastic plate

and simply consider local wave interactions from the points that support the plate. Any attempt to

include the finite extent of the elastic plate would almost inevitably require a numerical approach and

the key features associated with the supporting points would be harder to analyse.


