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Introduction 
At the 2005 Workshop, results were given comparing a fully non-linear boundary element 
analysis of propagating waves with calculations based on the classical linear analytical 
solution for a transient wavemaker (Eatock Taylor, 2005). Here the work is extended to 
consider diffraction by one or more circular cylinders, again in long crested propagating 
waves. The classical transient wavemaker solution is first adapted to facilitate the use of the 
efficient FFT algorithm to approximate the necessary integral. 
 
The classical solution 
The solution for long crested waves, generated by a piston wavemaker driven with a unit 
amplitude sinusoidal velocity at frequency ω, was given by Joo et al (1990) in the form 
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Here ),( txη is the wave elevation due to the imposed wavemaker velocity ttxu ωsin),( = , and 

.tanh2 kk=β  All results are non-dimensionalised with respect to the depth of the tank and 
the acceleration due to gravity. The origin of the coordinates ),( zx  is at the intersection of the 
wavemaker and the mean free surface.  
 
When the “steady state” of propagating sinusoidal waves has been reached at some point in 

the tank, their amplitude is
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We now consider a position x sufficiently far from the wavemaker that evanescent waves are 
negligible, and we introduce shifted coordinates ),( tx ′′  such that txkkx ′−′= β . Equation (1) 
is then written in the form: 
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after a change of integration variable from k to β . Equation (2) may be evaluated using the 
FFT algorithm, to perform the inverse transform from β (and k ) to t ′ . At each equispaced 
discrete value nβ , the corresponding wavenumber nk  is obtained from the dispersion 
relation, prior to doing the discrete transform. The result is a time history in terms of t ′ , for 
each specified position x′ . The time t  may be set at the length of the required simulation, and 
x in Eq. (1) may be set to zero. 
 
Figure 1 shows the spatial profiles at 60=t and t = 80, divided by 0A  to provide a unit 
amplitude in the steady state. Two curves are plotted in each case: one corresponds to direct 
evaluation of Eq. (1) by the FFT in the x domain; the other is based on use of 0=′x  and 

80=′t  in Eq. (2). The FFT was performed with 122  points. The case corresponds to 1=ω , 
which was considered by Joo et al (1990). They gave a corresponding figure for ,60=t  
which (if similarly scaled) appears to be the same as Fig. 1a. 

 
Figure 1 Profiles of transient wave, by direct evaluation of Eq. (1) and by Eq. (2) 

 
Diffraction by a cylinder 
The well known frequency domain solution for linear diffraction of a wave of amplitude A 
and frequency β , by a cylinder of radius a (McCamy & Fuchs,1954) is written in polar 
coordinates with x=r cosθ : 
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If we now replace the exponential term in Eq. (2) by the term in the square brackets in Eq. (3), 
we can obtain the solution for diffraction of the transient wave by the cylinder. Again it is 
convenient to evaluate this by the FFT algorithm. 
 
Figure 2 shows results at 60=t and 80=t for the diffraction of the above transient wave by a 
vertical circular cylinder, of radius 1=a in unit water depth )20.1( 0 =ak . The incident and 
total diffracted wave elevation are plotted, as well as the radiated wave (shifted down by one  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Diffraction of a transient wave by a cylinder 
 
unit). Note the different axes as compared with Fig. 1. Figure 3 shows a comparison with time 
histories of runup on the upwave face of a cylinder, obtained from a fully non-linear boundary 
element analysis (Eatock Taylor, Wu, Bai and Hu, 2005). This is for a cylinder of radius 
0.1416 in a tank of depth 1, and the waves are driven by a piston wavemaker at frequency 

2=ω . A cosine ramp function is imposed on the piston displacement time history over the 
first two periods, in both linear and BEM analyses. The elevations are divided by the piston 
amplitude, and time is expressed in periods. Results are superimposed for two amplitudes, and 
the effect of non-linearity may be observed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Linear and BEM analyses.             incident;              linear diffracted; 
BEM (A = 0.01);               BEM (A = 0.02) 

 
Diffraction by an array 
Maniar & Newman (1997) showed the strong magnification of wave forces due to diffraction 
by a long array of cylinders, linked to near trapping in regular waves. Some limited results for 
a linear array in a transient (focussed) wave group were given by Walker et al (2005), 
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including forces and free surface elevations. A typical elevation along the centreline of a 
linear array of 10 cylinders is shown in Figure 4, obtained by the linear transient analysis 
summarised above. The half spacing d between the axes of the cylinders is twice the radius, 
and the regular wavemaker frequency corresponds to the near trapping wavenumber given by 

.346352.10 =dk  The figure includes the non-dimensional local wave amplitude at steady 
state (the envelope, based on a direct linear frequency domain analysis); the total diffracted 
wave at an instant; and the corresponding incident wave. The wave front has passed the 
rightmost cylinder, and the trapping phenomenon is building up. Further results illustrating 
the build-up will be presented at the workshop. 
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Figure 4 Wave elevation along 10 cylinders during start-up of wave at near trapping 
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‘Transients in wave diffraction by cylinders and cylinder arrays’

Discusser - M.J. Cooker:

What time scale T of decay in amplitude would you get if you turned off the incident waves? Is T the
same or more or less than the time scale of increase towards steady (time-periodic) states which you

have shown in your talk?

Reply:

Turning off the piston wave-maker would lead to another complex transient at the location of the

array. One could use various types of ramp function, as I discussed at the Workshop last year in the

context of turning on the wavemaker. In principle, for the same transient rise and transient decay in

the incident wave I would expect the rise and decay of near-trapping response to have the same time

scale in this linear model.

Discusser - M. Longuet Higgins:

The growth of the wave amplitude in some cases resembles the growth in the wave envelope at the front

of a wave train, which is described by a Fresnel integral. Perhaps it would be possible to distinguish

these two effects by arranging for the wavemaker to be at different distances from the array,

Reply:

This would certainly be worth investigating. Other possibilities are to use different control signals on

the wavemaker to create different wave fronts. This is very easy to implement using the FFT analysis I

have described, but I have not yet used these ideas to clarify the transient response of the near-trapping

structure.

Discusser - M.H. Meylan:

Have you considered the complex resonance associated with the near trapping frequency. Maybe this

can explain the rise time etc?

Reply:

No, but I plan to do this. The 1997 A.O.R. paper by Evans & Porter, and your paper at the 2003

Hydroelasticity conference, could provide a way forward to quantify the equivalent ‘damping’ in the

near-trapping system. It is important to note that for the 4-column array at ka = 1.66, the cases
β = 0o and β = 45o lead to different rise times in the corresponding maximum local wave amplitudes.

The imaginary part of the complex, resonance frequency is not the only parameter governing the rise

(or decay) of the near-trapping.


