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Introduction

Common observation shows that an overturning thin sheet of water is typically generated at the
bow of a ship that advances in calm water. Numerical computation of this highly nonlinear, two-phase,
breaking flow is complex. A simple fully-nonlinear steady inviscid flow theory is summarized here. The
theory involves three main ingredients and distinct steps, explained below.

The flow is observed from a system of coordinates (X,Y, Z) attached to the moving ship. The Z axis is
vertical and points upward, and the mean free surface is taken as the plane Z = 0. The X axis lies along
the ship path and points toward the ship bow. Nondimensional coordinates (z,y,2) = (X,Y, Z) g/ V2
and related components (u,v,w) = (U, V,W)/V; of the flow velocity are defined in terms of the ship
speed V; and the acceleration of gravity g. Here, (U, V, W) is the velocity of the flow due to the ship.
Thus, the nondimensional velocity of the total flow (uniform stream opposing the forward speed of the
ship + flow due to the ship) is (v —1,v,w).

A local system of coordinates is also used. Specifically, the orthogonal unit vectors t = (¢*,t¥,0) and
m = (—t¥,t%,0) are defined. These vectors lie in a horizontal plane. The vector m is colinear with the
projection, onto the mean free-surface plane z = 0, of the unit vector n = (n*,n¥, n*) normal to the
ship hull. The vectors n and m point outside the ship. The vector t is tangent to the ship hull surface
and, on the positive side 0 < y of the ship hull considered here, points toward the ship bow. One has

t = (cosar, —sina, 0) m = (sina, cosa, 0) n = (sina cosy, cosa cosy, — siny) (la)

with —7/2 < o < 7/2 and —7/2 < v < 7/2. In the bow region, the angle a between the unit vector
t and the x axis is positive. The (flare) angle v between the normal vector n to the ship hull and the
mean free-surface plane z = 0 is positive for a typical hull form, and negative for a tumble hull. The
unit vector

s =t x n = (sinasinvy, cosasiny, cosy) = m siny + k cosy (1b)

is tangent to the ship hull and points upward. Here, k = (0,0, 1) is the unit vector along the vertical

z axis. The components (v —1,v,w) of the total flow velocity Viota1 along the unit vectors (i,j,k)
attached to the (z,y,z) axes and the corresponding velocity components (u’,v’,w’) along the unit
vectors (t,n,s) are related via the identity viotal = (u —1)i+vj+wk =u't +v' n+w's. The free
surface near the ship is defined by z = {(x,y) or z = ((t,m), and the slope (,, of the free surface in
the direction of the unit normal vector m is expressed as

Cm =tanpy with —7/2—y<pu<na/2—7 (2)
where i stands for the angle between the free surface and the mean free-surface plane z = 0.

Nonlinear analysis of flow along contact curve

A main element of the theory is a fully-nonlinear analysis of the steady inviscid flow along the contact
curve between the ship hull and the free surface. Thus, surface-tension and viscosity effects are ignored
here. However, no other approximations are made, and the analysis is exact for steady inviscid flows.

The ship-hull boundary condition n* (u—1)4+nYv+n*w = 0 and the kinematic and dynamic boundary
conditions w = (u —1)(; + v, and (u —1)*+ v+ w? = 1— 2( at the free surface z = ((x,y) are
presumed to hold along the contact curve between the ship hull and the free surface. These three
boundary conditions yield three algebraic equations (two linear equations and a quadratic equation)
that can be used to determine the three velocity components u, v and w. The resulting expressions
for u, v and w are given in Noblesse et al. (1991), where experimental validation may also be found.
Further experimental validation of the analysis is given in Waniewski et al. (2002).

The analysis of the ship-hull/free-surface contact flow given in Noblesse et al. (1991) is reconsidered
here using the local system of coordinates (t,n,s). The ship-hull boundary condition becomes v’ =0,



as expected. Thus, the velocity component v’ along the unit vector n normal to the ship hull is null,
and the flow velocity is given by

Viotal = U t+w's=vt+w txn (3)

The velocity components u’ and w’ along the unit vectors t and s tangent to the hull are then determined
by the kinematic and dynamic free-surface boundary conditions, which yield

w' (cosy — (msiny) = u' (; (W) 4 (w')? =1-2¢ (4)
Here, the ship-hull boundary condition v = 0 was used, and the free surface is defined by z = {(t,m).

The kinematic free-surface boundary condition (4) and expression (2) yield

L u' (4 cosp _ u' ¢/ cosy (5)

cos(y+pu) 11— tany tanu

This expression and the dynamic free-surface boundary condition (4) then yield

u/—\/ 2 cos(y + 1)

cos?(7y + ) + (3 cos?p

Here, the condition 0 < cos(y + p), which follows from (2), and the condition v’ < 0 (no flow reversal)
were used. Expressions (3) and (5) then show that the total flow velocity at the contact curve is

1-2¢
cos?(7y + p) + (7 cos?p

Vtotalzu,t+w/txn:—\/ [cos(y+ u) t + (rcosp t x n] (6)

Thus, the total flow velocity viotar at the contact curve between a ship hull and the free surface is
defined by the simple analytical expression (6) in terms of the ship speed Vi, the flare angle ~, the
elevation ¢ of the contact curve, and the angle p between the free surface and the horizontal plane.
Expression (6) is based on exact boundary conditions (for steady inviscid flows), at the actual locations
of the ship hull and the free surface, and thus is exact. This expression is equivalent to, but simpler
than, the expressions for the velocity components v, v and w given in Noblesse et al. (1991).

Expression (5) and the inequalities v/ < 0 and 0 < cos(y + p) yield sign(w’) = —sign(¢; cosp) .
This relation yields sign(w’) = —sign(¢;) for —7/2 < pr < 7/2, and one then has 0 < w’ in the region
between a ship stem and a ship bow-wave crest where ¢; < 0. Expression (5) yields

w’ cosy ~u' (; if tany tanp < 1 (7)

This approximation may be expected to hold except near a ship stem (or stern) where p or 4 can be
large. The approximation (7) and the dynamic free-surface boundary condition (4) yield

1-2¢

!/ /
Viotal = U t+w txXn~x —| —————
cos?y +

(cosyt+ (st xmn) (8)

This approximation defines the flow velocity at the free-surface and ship-hull contact curve in terms of
the ship speed V; and flare angle «, and the elevation ¢ of the contact curve.

Lagrangian analysis of detached flow sheet

Another main element of the theory is the determination of the shape of the detached sheet of water
that leaves the ship hull along the ship-hull/free-surface contact curve. This step of the theory consists
in an elementary Lagrangian analysis of the motions of fluid particles that leave the ship hull at the
contact (flow-detachment) curve with velocity

wt+w's=u't+w (m siny +kcosy)
with «’ and w’ given by (6) or the related approximation (8).

The nondimensional time § = © g/Vj and the nondimensional coordinates t = T'g/ V2, m = Mg/ V2,
z = Zg/V2 show that the path of a water particle is determined by Newton’s equations d?t/df? = 0,



d*m/d0*=0, d?z/d9?>= —1. Here, t and m are the nondimensional horizontal distances along the unit
vectors t and m tangent and normal to the ship hull in a horizontal plane. Thus, a water particle that
leaves a point (tg,mg,() of the flow-detachment curve, with velocity given by (6) or (8), at the time
6 = 0 follows the path t =t + Qu), m = mg + Qwjsiny, z = ¢ + O wf cosy — #%/2. These parametric
equations yield

t—t t—t t—t
m—mozu—éowgsinfy z—(z%o<w600s7— 2“60> (9a)
m—myo m—mo
= 1-— = 9b
S =T (1 ) (&)

Thus, the projections of the paths of water particles on the horizontal plane (m,t) and the vertical
planes (k,t) and (k,m) are a straight line and parabolas, respectively, as expected.

The water trajectory defined by (9) intersects the mean free-surface plane z = 0 for

t,—0— 1
72_26 0 _ wj) cosy + \/(w(’))2 cos2y +2( =

Mz=0 — Mo
— 10
wy) siny (10)

If 0 < wy, the water trajectory reaches a top height for (¢¢op—10)/u( = wj cosy = (M op—mo )/ (wy siny)
and the top height is given by

Ztop — ¢ = (wpcosy)?/ 2~ (ugCe)?/2 (11)

where the approximation follows from (7). Thus, the maximum height z4,, reached by water particles
that leave the ship-hull/free-surface contact curve at a height z = ( is significantly larger that ¢ only if
| C¢| is large, e.g. near a ship stem where the contact curve is tangent to the ship stem (Noblesse et al.
1991).

Two options : semi-analytical and analytical theories

Expressions (9)—(11) define the detached sheet of water that leaves the ship hull along the ship-hull
and free-surface contact curve in terms of the location of the contact curve and the related velocity
components u’ and w’. These velocity components are defined by (8) in terms of the ship speed, the
hull geometry, and the location of the contact curve. Thus, the detached sheet of water generated at a
ship bow is explicitly determined in terms of the ship speed, the hull geometry, and the location of the
contact curve.

The location of the contact curve can be determined using a number of well-established calculation
methods, including approximate methods (Michell thin-ship theory, slender-ship approximation, 2D+T
approximation), panel methods based on boundary distributions of Rankine sources or free-surface Green
functions, and CFD methods that solve discretized Euler or RANS equations. This mixed approach
— in which the analytical expressions for the flow at the ship-hull/free-surface contact curve and the
related detached bow sheet given here are coupled with a numerical determination of the location of the
contact curve (taken as the computed bow wave) — provides a semi-analytical theory of overturning
ship bow waves.

An alternative, fully-analytical, theory is obtained if the simple analytical expressions for the height
and location of a ship bow wave given in Noblesse et al. (2005) are used (instead of a computational
tool) to determine the location of the ship-hull and free-surface contact curve. Specifically, the height
2, = Zypg/VZ2 and the location z, = X, g/V2 of the bow wave generated by a ship that advances at
constant speed Vy in calm water is explicitly determined in terms of the ship speed Vi, the draft D,
and the waterline entrance angle 2 ag by

C? tanag cX Vs
~ ~ ith Fp = 12
= 14+ Fp cosag e 1+Fp W P VgD (12)

These simple analytical expressions, with C4 ~ 2.2 and CX ~ 1.1, are shown in Noblesse et al. (2005)
to be in excellent agreement with experimental measurements for wedge-like ship bows, and for other
ship-bow forms if a simple procedure is used to define an effective draft D and an effective waterline
entrance angle 2apg .



Figure 1: Overturning bow sheet for ag = 10°, v = 10° and Fp = 0.67

A ship bow wave can then be reasonably approximated by the expression

L C? tanag 1 (1+Fp)?¢t?
T 14 Fp cosag (CX)2

Here, the crest of the bow wave is chosen as the origin ¢ = 0 of the axis associated with the previously-
defined unit vector t tangent to the ship hull. The foregoing expression shows that the normalized
bow-wave elevation (14+Fp) (cosag/tanag) Z g/ V.2 only depends on the normalized horizontal distance
(1+Fp) X g/VZ2 from the bow-wave crest. This similarity rule implies that all bow-wave profiles (for
every ship speed Vy, draft D and waterline entrance angle 2 ag) approximately coalesce into a single
curve if represented in terms of the foregoing normalized variables.

1
14+ Fp

) with |¢] < (13)

Expression (13) for a ship bow-wave profile can be improved if one enforces the property — theo-
retically established in Noblesse et al. (1991) and experimentally verified in Waniewski et al. (2002) —
that, at a ship stem, the bow-wave profile is tangent to the stem line. This property and expressions
(12) for a bow-wave height and location can indeed be used to obtain a useful analytical approximation
to a ship bow wave.

This analytical approximation for the ship-hull/free-surface contact curve, or expression (13), can
be used with expressions (8) and expressions (9)—(11) to explicitly determine the overturning sheet of
water that is typically generated at a ship bow in terms of the ship speed V; and the hull geometry.

Comparison with experimental observations

Calculations based on expressions (13), (8) and (9)—(11) in fact are reported in Delhommeau et al.
(2005) and in Fig.1 for an idealized ship bow, taken as an inclined flat plate with flare angle v = 10° and
half waterline-entrance angle ap = 10°, at a Froude number Fp = 0.67. These analytical predictions
are in reasonable agreement with the experimental observations. Additional, more detailed experimental
measurements are in progress and will be reported at the Workshop, with comparisons with theoretical
predictions.

Conclusion

In summary, a remarkably simple, fully-analytical, theory of the overturning thin sheet of water that
is typically generated at the bow of a ship advancing in calm water has been summarized.
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Discusser - H.B. Bingham:

Would you comment on the significance of the fact that your experiments are unsymmetric with respect

to the ship's centerline. This would seem to produce a rather different flow from both the real ship
bow and your theory.

Reply:

Our experiments are made with a flat plate in heel and drift which leads to an unsymmetric flow. We
check by 3-D perfect fluid computations that this effect is not too large and that the non vertical
leading edge has little influence on the shape of the wave at moderate heel angles. In practice this
model is more convenient to study rapidly the influence of flare and entrance angles.



