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1. Setting the Scene:
This work is about water waves which slosh back and forth inside a tank which is free to

move horizontally under the action of the waves inside. The tank may also be acted upon by
horizontal restoring forces which only respond to the tank’s displacement, or the tank may be
unconstrained. In this sense the work is motivated by wave loads which are strong enough to
overcome fixed constraints and move the container in which the wave is sloshing. Significant
wave loads are encountered in the haulage industry when bulk liquids are carried in partially
filled tankers, especially when the tankers are manoeuvering. Very large liquid movements,
such as suddenly erupting jets, can be made by quite small displacements of the container. The
jets can ascend the container walls and damage the roof. So predicting the circumstances under
which such jets might occur would be a useful theory.

In the tank which we treat, some possible motions of the system include periodic solutions,
in which the tank oscillates with a single frequencyω while waves are sloshing inside the tank
and the tank is also moving with frequencyω. The purpose of the work to be presented is to
find the mode shapes of the moving free-surface elevationη, the potentialφ(x, y, t) of the un-
derlying velocity field, and the influence of the shape of the tank’s boundary on the frequency
of oscillation. We concentrate on flow in two space dimensions in tanks with plane walls for
which simple expressions for the motion can be found.

This topic is specialised and different from the bulk of past contributions to sloshing. In
fixed tanks see for example Evans and Linton (1993). For tanks which are forced to move at
prescribed frequencies the conditions at and near resonance have been studied experimentally
by Chester and Bones (1968) and theoretically by Chester (1968) and Ockendonet al. (1986).
Hill and Frandsen (2005) have modelled the growth of water waves under periodic excitation.
Ibrahim (2005) exhaustively reviews earlier work on forced, and some examples of free, tank
motions, but there remain many theoretically untouched areas in this subject.

2. Analysis of Sloshing:
We take cartesian axes moving with the tank,y increases vertically up andx increases to the

right. The still water level lies aty = 0. In a laboratory frame (subscriptl on variables) with
coordinates(xl, yl) the tank’s centreline has the positionxl = X(t) and the velocity potential is
φl(xl, yl, t) = xX ′ + φ(x, y, t), where prime is the time-derivative. According to linear theory,
the velocity potentialφ in the frame of the tank, satisfies Laplace’s equation in the fluid domain
below the still water level and the following free-surface boundary conditions:

φt + gη = −xX ′′ on y = 0 (1)

ηt = φy on y = 0 . (2)

Either the bed is a streamline, or equivalently, on the bedn is a unit normal and

n.∇φ = 0 . (3)



In order to close the problem we foresee an equation of motion connecting the hydrodynamic
forcing on the tank walls with the tank’s acceleration. But here we will use an equivalent
solvability condition.

3. Some Results:
The presence of a term linear inx on the right-hand side of (1) suggests that bothφ andη

are directly proportional tox. One potential which leads to a simple solution is

φ = x(y +H)f1(t) , (4)

whereH > 0 is a depth. It can be shown thatf1(t) = A cos(ωt+ θ0). The free-surface is plane
and one example of a container shape which is compatible with (4), is a V-shaped tank with
walls inclined at angleπ/4 to the positive and the negativex−axis, and the apex of the V lies
at (x = 0, y = −H). This was treated by Cooker (1994) and is in Roberts (2005).

Another solution has a velocity potential directly proportional to the imaginary part ofz4

where the complex variablez = x+ i[y+H]. A suitable way to write this solution of Laplace’s
equation is

φ(x, y, t) = (x3[y +H]− x[y +H]3)f ′
3(t) . (5)

Equation (2) gives us the form of the corresponding free-surface shape. It is a cubic:

η(x, t) = (x3 − 3H2x)f3(t) , (6)

where the time-integration constant vanishes to ensure thaty = 0 is the mean water level. Both
φ andη are odd with respect tox, in order to ensure a coupling between the liquid motion and
the sideways oscillation of the tank. The coefficients ofx3 andx which come out of equation
(1) give us two ordinary differential equations, forf3(t) andX(t):

f ′′
3 +

g

H
f3 = 0 and X ′′ = −H3f ′′

3 − 3gH2f3 . (7)

The first of these givesf3(t) = A cos(ωt + θ0), whereω2 = g/H andθ0 is a phase constant;
and this completes the description of the wave elevation in equation (6). The second member
of equation (7) dictates that for these waves to occur, the tank must have a motion given by

X(t) = −2gH2A cos(ωt+ θ0) . (8)

The oscillation frequencyω is compatible with the wave forcing on the walls of the tank. The
liquid force on the tank also has frequencyω. We can satisfy Newton’s second law for the
motion of the tank, (in the laboratory frame)mX ′′ + rX = k cos(ωt+ θ0), wherem is the mass
of the tank,r is the coefficient of any restoring force andk is a constant which depends on the
geometry of the tank.

Now we find the shape of the tank. With respect to the tank’s frame of reference, the stream
function associated with equation (5) is directly proportional to the real part ofz4:

ψ(x, y, t) = (x4 − 6x2[y +H]2 + [y +H]2)f ′
3(t)/4 .

(In the laboratory frame of reference the stream functionψl includes the oscillation of the tank,
and it isψl = ψ + yf ′

3.) Now in order to satisfy condition (3)ψ is constant (spatially uniform)
on certain straight lines (y+H = x tanα) which pass through(x = 0, y = −H) at anglesα of



elevationπ/8, 3π/8, 5π/8 and7π/8 to the positivex−axis. These lines (and other streamlines
defined byψ) can be used to form examples of shapes for the bed of the tank, consistent with
the above velocity field, free-surface and tank motions.

4. Example and Discussion:
The tank defined by the streamlines with anglesα = π/8 andα = 3π/8, holds fluid with a

still waterline which lies aty = 0 betweenx = H tan(π/8) = 0.414H andx = H tan(3π/8) =
2.41H. Between these limits the free surface oscillates with a node atx = H

√
3 = 1.73H,

whereη = 0 for all time. The expression forη(x, t) given by (6) conserves the volume of fluid.
An interesting feature of the wave is that the free-surface contact point on the right-hand slope
has much greater extremes in elevation in its excursion up and down the beach than does the
left-hand contact point on its side where the wall overhangs the fluid domain. Also the right-
hand contact point has an amplitude of the horizontal component of oscillation which is much
greater than the amplitude of the horizontal oscillation of the tank. This is an example of large
displacement of a liquid jet ascending a fluid boundary, induced by a relatively small normal
component of displacement of the boundary. This may help explain the hazardous liquid jets
which shoot out of carelessly handled containers. Two applications of these preliminary results
may bear on the handling of heavy liquids poured from light containers and in considering the
generation of water waves by the seismic displacement of the sea bed near beaches.

Other solutions will be discussed at the workshop. As suggested in the sentence before
equation (5), one can construct other velocity potentials,φ, from the imaginary part of
(x+ i[y+H])n, where the powern is 2 or 4 in this abstract, butn can be any even integer. The
corresponding surface elevations forn = 6, 8, 10, ... are polynomials inx of degrees5, 7, 9, ....
The corresponding containers are sectors bounded by a selection fromn planes whose adjacent
slopes subtend angleπ/n at (0,−H).
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