
Potential Flow below the Capillary Surfa
e of a Vis
ous FluidX.B. Chen�, D.Q. Lu��, W.Y. Duan��� & A.T. Chwang���Resear
h Department, BV, 92077 Paris La D�efense (Fran
e)Email: xiao-bo.
hen�bureauveritas.
om��Department of Me
hani
al Engineering, HKU, Hong Kong (China)���College of Shipbuilding Engineering, HEU, 150001 Harbin (China)The potential 
ow in a vis
ous 
uid due to a point impulsive for
e applying at the free surfa
e is 
on-sidered within the framework of linear Stokes equations. The 
ombined e�e
t of 
uid vis
osity and surfa
etension on the potential fun
tion below the water surfa
e is studied. Dependent on the wavenumbers asso
i-ated with the level of the e�e
t due to surfa
e tension, the os
illations 
an be grouped as gravity-dominantwaves and 
apillary-dominant waves. It is shown that the wave form of gravity-dominant os
illations islargely modi�ed by the surfa
e tension while the wave amplitude of 
apillary-dominant os
illations is mostlyredu
ed by the 
uid vis
osity.1. Stokes equationWe 
onsider the lower half-spa
e �lled with water limited on the top by the water-air interfa
e. A Cartesian
oordinate system is de�ned by pla
ing the (x; y)-plane 
oin
ided with the undisturbed free surfa
e andthe z-axis oriented positively upward. In this gravity-dominant 
uid domain, the referen
e length L, thea

eleration of gravity g and the water density � are used to de�ne the nondimensional 
oordinates x =(x; y; z), the time t, the 
uid velo
ity u = (u; v; w), the velo
ity potential �, the dynami
 pressure Pand for
es F with respe
t to (L;pg=L;pgL;pgL3; �gL; �gL3), respe
tively. We study the 
ow due to apoint impulsive for
e F applied verti
ally downward at the origin of 
oordinate system. By assuming thein
ompressibility, the 
uid 
ow is governed by the 
ontinuity equation and the momentum equation :r � u = 0 and ut = �rP + �r2u� ezFÆ(x)Æ(t) (1a)where � = �=(�pgL3) with � the 
uid vis
osity. The term �ezFÆ(x) represents the singular for
e lo
atedat the origin where ez is the unit ve
tor in the z dire
tion, Æ(�) is the Dira
 delta fun
tion.On the free surfa
e z = �(x; y; t), the boundary 
onditions are linearized by assuming small waveamplitudes and written on the undisturbed free surfa
e z = 0 :�t = w (2a)as the kinemati
 
ondition stating no 
uid parti
les 
ross the free surfa
e and�(uz + wx) = 0 = �(vz + wy) (2b)� � �2(�xx + �yy) + 2�wz = P (2
)as the dynami
 
onditions representing the vanishing of shear stress in both x and y dire
tions (2b) and theequation of normal stress (2
). In (2
), � =pT=(�gL2) with T is the surfa
e tension of water-air interfa
e.In addition, the initial values of the velo
ity, the hydrodynami
 pressure and the free-surfa
e elevationare taken as those of the quies
ent 
uid, i.e.u = P = � = 0 at t = 0 (3)The equations (1-3) 
onstru
t an initial-boundary-value problem.2. Solution of the initial-boundary-value problemTo solve the initial-boundary-value problem pre
eding de�ned (1-3), the unknowns (u; P ) are de
omposedas the sum of an unbounded singular Stokes 
ow (uS ; PS) and the regular 
ow (uR; PR) whi
h representsthe free-surfa
e e�e
t. Furthermore, the 
ontinuous ve
tor uR is written as the sum of an irrotational anda solenoidal ve
tors : uR = r� + uT (4)su
h that r2� = 0 = r � uT and uTt = �r2uT (5)



where the s
alar fun
tion �(x; t) represents the irrotational 
ow while uT the rotational 
ow. The dynami
pressure PR is de�ned by : PR = ��t + f(t) (6)where the fun
tion f(t) is introdu
ed to satisfy the initial 
ondition P = PR + PS = 0 at t = 0 sin
e�0 = �(t = 0) may not be ne
essary zero. Indeed, we have used f(t) = ��0Æ(t) dire
tly in the following forthe sake of simpli
ity.The boundary 
onditions (2) 
an now be expressed in terms of (uS ; PS;�;uT ) on the undisturbed freesurfa
e (z = 0) : �t � (�z + wT ) = wS (7a)2�zx + uTz + wTx = �(uSz + wSx ) (7b)2�zy + vTz + wTy = �(vSz + wSy ) (7
)�t + � � �2(�xx + �yy) + 2�(�zz + wTz ) = PS � 2�wSz � �00Æ(t) (7d)in whi
h �00 = �(x; y; z = 0; t = 0). The unbounded singular 
ow on the right hand side of (7) is well knownin the work of Lu & Chwang (2004) and satis�es :PS = F=(4�) �z(1=jxj)Æ(t) (8a)uSt � �r2uS = �F=(4�)�(�zx; �zy;��xx��yy)(1=jxj)�Æ(t) (8b)whi
h yield the solutions in integral forms for (uS ; PS) by taking the Lapla
e transform with respe
t to tand the Fourier integral with respe
t to (x; y). In the same way, we introdu
e the joint integral transformfor (�;�;uT ) as : [~�; ~�; ~uT ℄ = Z 10dt Z 1�1dy Z 1�1dx [�;�0ekz ;uT0 ek�z℄e�i(�x+�y)�st (9)in whi
h, we have used the notations :�0 = �(x; y; z=0; t) ; uT0 = uT (x; y; z=0; t) ; k=p�2+�2 and k�=ps=�+ k2Taking the joint integral transform (9) over the left hand side of (7) as well as r � uT =0, and introdu
ingthe integral form of (PS ;uS) on the right hand side of (7), a system of linear equations is obtained for the�ve unknowns :0BB� s �k 0 0 �10 2ik� k� 0 i�0 2ik� 0 k� i�1 + �2k2 s+ 2�k2 0 0 2�k�0 0 i� i� k� 1CCA0BBB� ~�~�0~uT0~vT0~wT0 1CCCA = � F2s 0BBB� k(1�k=k�)i�k�(1�k=k�)2i�k�(1�k=k�)2s0 1CCCA (10)whi
h gives :~�0 = �F2 �ND � 1s� with N = 2(s+ 2�k2) and D = !2 + (s+ 2�k2)2 � 4�2k3k� (11)In (11), D is often 
alled the dispersion fun
tion and !2 = k+�2k3. Similar results for (~�0; ~uT0 ; ~vT0 ; ~wT0 ) withthe same dispersion fun
tion D in denominator 
an be obtained. The wave elevation � has been 
onsideredin a number of studies as in Miles (1957) and in Lu & Chwang (2003). Sin
e the amplitude fun
tions of(~uT0 ; ~vT0 ; ~wT0 ) are of order (�1=2; �1=2; �), respe
tively, we are interested here to the potential fun
tion � whi
his obtained by taking the inverse integral transform :� = � F16�3i Z 
+i1
�i1ds Z 1�1d�Z 1�1d� (N=D � 1=s)ekz+i(�x+�y)+st (12)where N and D are given in (11) and 
 is the Lapla
e 
onvergen
e abs
issa in the Bromwi
h integral for theinversion of Lapla
e transform.3. Evaluation of the potential fun
tionTo evaluate the potential fun
tion �(x; t), we examine the equation D = 0 whi
h gives two poles of theLapla
e integral : s� = �i! � 2�k2 +O(�3=2) (13)



By taking a 
ontour integration in the 
omplex s plane using the Cau
hy residue theorem, we obtain :�(x; y; z; t) = � F8�2 Z 1�1d�Z 1�1d� �2e�2�k2t 
os(!t)� 1�ekz+i(�x+�y) +O(�) (14)whi
h 
an be further written by introdu
ing the Bessel fun
tion J0(�) of the �rst kind :�(h; z; t) = �F=(4�) Z 10 dk k�2e�2�k2t 
os(!t)� 1�ekzJ0(kh) +O(�) (15)in whi
h h =px2 + y2. The derivative of � with respe
t to t is dire
tly derived from (15) and written as�t(h; z; t) = F=(2�) Z 10 dk e�2�k2tk ! sin(!�) ekzJ0(kh) +O(�) (16)Following the work by Chen & Duan (2003) in whi
h a potential fun
tion similar to (16) but in an invis
id
uid was analyzed, there are two saddle points kg and kT asso
iated with the phase fun
tion  = ! � ka ofthe os
illatory part of the integrand in (16) :kg = 1=(4a2) +O(�=a2) and kT = 4a2=(9�2) +O(�=a2) for a� p� (17)where a = h=t is the wave velo
ity. When a is of the same order as p�, the wavenumbers kg and kT be
ome
lose and in parti
ular, kg = kT = k0 � 0:393=� for a = a0 � 1:086p�. When a < a0, the wavenumbers kgand kT are 
omplex. This analysis shows that there are two waves propagating at the same speed a : one isgravity-dominant wave with a lower wavenumber kg (17) and another 
apillary-dominant wave with a mu
hlarger wavenumber kT (17). There is also a minimum speed a0 below whi
h two waves be
ome evanes
ent.Unlike the invis
id potential fun
tion in Chen & Duan (2003), the fa
tor e�2�k2t is present in theintegrand of (16). This exponentially-de
reasing fun
tion redu
es the amplitude of �t at large time and forwaves of large wavenumbers. The 
apillary-dominant waves are then heavy damped by the vis
ous e�e
twhile gravity-dominant waves are mu
h less a�e
ted at small values of time.To 
on�rm above analysis, we have performed the numeri
al 
omputation of (16) in the 
omplex k-planeby using the steepest des
ent algorithm. The �gures on the next page illustrate �t for F=(�2z�) = 1 andz = �1=1000 at a �xed t = 10 and h varying from 0 to 8/5.4. Dis
ussions and 
on
lusionsThe potential fun
tion �t de�ned by (16) with the 
uid vis
osity but without taking a

ount of the e�e
tof surfa
e tension is shown on Figure 1. Large waves with small wavelength are present at a region of smalldistan
e from the singularity. Due to the vis
ous e�e
t and the immersion z = �1=1000, the wave amplitudeof larger wavenumbers 
lose to the singularity is redu
ed to zero. This is 
onsistent with that the transientpure-gravity waves on the free surfa
e at a given instant os
illate with in
reasing amplitude and de
reasingwavelength when we approa
h to the impulsive for
e point, as stated in Lamb (1932). Furthermore, theamplitude of pure-gravity waves in
reases linearly with time in a rate of order O(t=h2) and wavenumberin
reases in an order of O[t=(4h2)℄. This pe
uliar property of pure-gravity potential hinders the numeri
aldevelopment to solve the boundary-value problem asso
iated with a 
oating body in whi
h the spa
e integralover body's surfa
e as well as the time-
onvolution integral are diÆ
ult to be a

urate.Taking into a

ount of the e�e
t of surfa
e tension, the wave form 
hanges, in parti
ular, there is notwave at all at small distan
e when h=t < a0. On the other side, at larger distan
e from the impulsive point,the 
apillary-dominant waves have very large amplitudes with wavenumbers proportional to 4h2=(9t2�2) asshown on Figure 2. These large and short waves of 
apillarity are fortunately heavy damped by the vis
ouse�e
t as shown on Figure 3.In pra
ti
e, the most interesting are the gravity-dominant waves. Their properties of the potentialfun
tion with the 
ombine e�e
t of surfa
e tension and 
uid vis
osity are wel
ome and believed to be mu
huseful in the numeri
al solution of wave-body problems.Referen
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6Figure 1: Potential fun
tion �t(h; z; t) at z = �1=1000 and t = 10 against h varying from 0 to 8/5, obtainedby taking only a

ount of the 
uid vis
osity (� = 3:193e-7) but without the surfa
e tension (� = 0).
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6Figure 2: Gravity-dominant waves (solid line) and 
apillary-dominant waves (dashed line) of potential fun
-tion �t(h; z; t) at z = �1=1000 and t = 10 against h varying from 0 to 8/5, obtained by taking a

ount ofsurfa
e tension (�=2.713e-3) but without the 
uid vis
osity (� = 0).
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6Figure 3: Gravity-dominant waves (solid line) and 
apillary-dominant waves (dashed line) of potential fun
-tion �t(h; z; t) at z = �1=1000 and t = 10 against h varying from 0 to 8/5, obtained by taking a

ount ofboth the surfa
e tension (�=2.713e-3) and the 
uid vis
osity (�=3.193e-7).


