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1 Introduction

Two-dimensional linear wave scattering by topography has received extensive attention
in the literature. Such situations are commonly addressed by approximating the vertical
structure of the fluid motion and then “averaging” over the depth to remove the vertical
coordinate. In its simplest form this approach yields shallow-water theory, but also includes
the so-called mild-slope (Berkhoff, 1976) and modified mild-slope equations (Chamberlain
& Porter, 1995).

Here we follow the spirit of the averaging methods, but first rewrite the governing equa-
tions in terms of new orthogonal curvilinear coordinates, chosen so that the free surface
and bed profile coincide with coordinate lines of the new ‘vertical’ coordinate, ζ . The re-
sulting system is then dealt with by the averaging procedure described above, but where
it is now the ζ dependence which is approximated and then averaged, and the governing
ordinary differential equation is in the new ‘horizontal’ coordinate ξ. One advantage of
this transformation is that the no normal flow condition at the bed transforms to a simpler
Neumann condition in the new coordinates, and the ζ dependence can be chosen to satisfy
this condition exactly. The flow field near the bed can thus be accurately reproduced with
only a one-term approximation, since at the bed the lines ξ = constant and the bed profile
are perpendicular. This procedure thus avoids the need to include the so-called “bed mode”
of Athanassoulis & Belibassakis (1999) and Chamberlain & Porter (2006).

2 Preliminaries

Incompressible and homogeneous fluid undergoes irrotational motion above a bed of vary-
ing depth z = −h(x) for h > 0, and where x and z are horizontal and vertical Cartesian
coordinates respectively, with z = 0 coinciding with the undisturbed fluid free surface.
Harmonic time-dependence is filtered from proceedings by writing the velocity potential Φ
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Figure 1: Transformed coordinates (ξ, ζ) for a typical bed profile z = −h(x).

as
Φ(x, z, t) = Re{φ(x, z)e−iωt}

where ω is an assigned wave frequency. The usual equations of linearised wave theory then
hold, namely

∇2φ = 0 (−h < z < 0), (2.1)

φz −Kφ = 0 (z = 0), (2.2)

φz + h′φx = 0 (z = −h), (2.3)

where K = ω2/g and ∇2 = ∂2

∂x2 + ∂2

∂z2 . In addition, appropriate radiation conditions are
required to ensure that the velocity potential φ is unique, and these are specified below.

3 Variable transformation

We introduce the new ‘vertical’ coordinate

ζ =
zH

h
, (3.1)

where H is a constant scaling factor to be chosen. The free surface z = 0 and bed z = −h
thus correspond to ζ = 0 and ζ = −H , respectively (see figure 1). At every point (x, z)
the new ‘horizontal’ coordinate, ξ, is perpendicular to ζ , so ∇ξ · ∇ζ = 0, and ξ is thus
determined from

zh′(x)ξx − h(x)ξz = 0.

In particular, ξ is constant on characteristics satisfying

dx

dz
= −

zh′(x)

h(x)
.

It remains to choose a suitable boundary condition for ξ. One possibility is to choose ξ
such that

ξ =

∫ x H

h(s)
ds (z = 0). (3.2)



This choice has the advantage that Laplace’s equation is retained in regions of constant
fluid depth (see equation (3.3), below), but the numerical approximation of the integral in
(3.2) adds an extra level of computational difficulty. For simplicity we thus choose x and ξ
to coincide on the free surface z = ζ = 0. Then, given (x, z), ξ is determined by

ξ = x̂(0), where
dx̂

dẑ
= −

ẑh′(x̂)

h(x̂)
, x̂(z) = x.

In terms of the new coordinates, Laplace’s equation (2.1) transforms to

∂

∂ξ

(

α
∂φ

∂ξ

)

+
∂

∂ζ

(

1

α

∂φ

∂ζ

)

= 0, (3.3)

where α = hξx/H , whilst the boundary conditions (2.2) and (2.3) become

φζ −
Kh

H
φ = 0 (ζ = 0) (3.4)

and
φζ = 0 (ζ = −H), (3.5)

respectively. In regions of constant depth, ξ = x, so α = h/H is constant and (3.3) in
conjunction with (3.4) and (3.5) becomes separable. Propagating solutions are of the form

φ =
{

AeiκHξ/h +Be−iκHξ/h
}

cosh[κ(ζ+H)] ≡
{

Aeikx +Be−ikx
}

cosh[k(z+h)], (3.6)

where κ = kh/H and k is the real and positive solution of the usual dispersion relation

K = k tanh(kh). (3.7)

This solution for φ = φ(ξ, ζ) forms the basis of our approximation in fluid regions above
non-uniform bed sections.

We suppose that the bed profile function h(x) satisfies

h(x) =

{

h0 x ≤ 0
hl x ≥ l

for some l > 0, where h0 and hl are positive constants, and that h′(0) = h′(l) = 0. (The
scaling factor H in (3.1) is then chosen as H = h0.) In the regions of constant fluid depth
we write φ(x, z) = cosh[k(z + h)]sech(kh)φ0(x), where

φ0(x) =

{

A−e
ik0x +B−e

−ik0x x ≤ 0,
A+e

−ikl(x−l) +B+e
ikl(x−l) x ≥ l.

(3.8)

Here, k0 and kl are the solutions of the dispersion relation (3.7) in x < 0 and x > l,
respectively, A− and A+ are known, and B− and B+ are to be determined.

In the region of non-uniform bed, we approximate φ by φ ≈ ψ, and seek a Galerkin
approximation to (3.3), by requiring that ∇2ψ is orthogonal to some given function w.
Thus

∫ ξ0

−ξ0

∫ 0

−H

{

∂

∂ξ

(

α
∂ψ

∂ξ

)

+
∂

∂ζ

(

1

α

∂ψ

∂ζ

)}

w dζ dξ = 0, (3.9)



−1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

Figure 2: Contours of Im(φ) in the case of a plane wave from x = −∞ incident on the bed
profile h(x) = hl − (hl − h0)(1 + 2(x/l)3 − 3(x/l)2), with l = 4, h0 = 1 and hl = 2.

for some ξ0 > 0. Following the structure of the propagating mode (3.6) for regions of
uniform depth, we choose ψ = φ0(ξ)w(ξ, ζ), where w = cosh[κ(ζ + H)], and (3.9) may
then be manipulated to show that φ0(ξ) satisfies

(u(ξ)φ′

0(ξ))
′ + v(ξ)φ0(ξ) = 0 (3.10)

where

u(ξ) =

∫ 0

−H

αw2 dζ, v(ξ) =

∫ 0

−H

{

w(αwξ)ξ −
1

α
w2

ζ

}

dζ +
1

α
wwζ

∣

∣

∣

∣

ζ=0

.

Equation (3.10) is solved numerically in the region ξ ∈ (0, l), and continuity of φ0 and φ′

0

is imposed across x = 0 and x = l to match the uniform depth solutions (3.8).

4 Results

Figure 2 shows contours of φ for a particular bed profile and incident wave. Note that
the equipotentials intersect the bed profile at right-angles, in contrast to other single mode
depth-averaging methods.

A selection of further results will be presented in the talk.
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