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1. Introduction direction points outwards the fluid domaid,, is the

normal velocity component of the surfageV, is the

When dealing with wave-induced loads and ShIR rmal component of the fluid velocity at the surface

motions in rough seas, seakeeping theories usua%%Assumin the existence of a velocity poterial
only accommodate nonlinear and extreme effects su 9 y potergia
0p

as slamming in separate and empirical ways. Afla havev. = 2% and the Gauss theorem gives
attempt is made here to formulate consistently the " on

nonlinear hydromechanic forces, including the

momentum slamming force, acting on a shig(t) =”,0(/ﬂd5 (3)
undergoing large-amplitude motions. The formulation S

is within the framework of potential flow theory. By

satisfying the exact boundary condition on the time; A time-domain strip theory formulation
varying body surface but assuming linearized free
surface boundary condition, a 2D time-domair
solution is presented, which extends Faltinsen
(1990) momentum approach for water entry analys
and reveals a consistent theoretical background for 1
nonlinear wave loading and ship motion calculatior
published in Xia e al. (1998). The present
formulation provides a foundation for accurate an
practical simulation of seakeeping in rough seas.

2. The momentum equation

The fluid momentum inside a volun® surrounding
the ship hull can be written as

M(t)zmder 1)
Q

/
So

whereV is the fluid velocity. Figurel Definition of a control volume to calculate
] ) ] ) hydromechanic force on a ship section.
For an incompressible fluid, the equation for

conservation of momentum can be written as (Efhe equation for conservation of momentum (2) can

(9.29), Faltinsen (1990)), be applied to derive the fluid forces on a strip or a
dM section of a ship at forward speed. The reference
_:_p”KB+ gz}n +V (v, —Un)}ds 2 frame is chosen as the moving equilibrium Cartesian
dt S L\P coordinate system where tlgy plane is on the still

. . . water surface and traveling at the ship spgexkis is
In this equationSis the closed surface for the VOIumetowards the ship bow ar?daxis is Spvx?ar?: The

Q andn, the normal vector t& The positive normal ¢4 speed of the ship appears as an incident



steady flow with velocityJ in the opposite-axis. In Finally, sinceU, =V, on Sgand S; andU, =0
applying the momentum equation, the control surfagg, S, and S, , we have
Scan be selected as shown in Figure 1. There are two 2

lateral planesS, separated by a distandg exterior J-'[ (V _U )ds p ” V ds ©)
to the ship.S,, is fixed in space and located a certain °¢ 0x;

distance away from the ship. The intersection curve

between the planes and the ship is cal®gd(x,t). Therefore, from (6), the transverse-plane

We only consider the strip motions and fluid forces |H¥?{§?§§hamc force on a ship cross-section can be

the transverse plan.

We denoteg the ‘oscillating’ velocity potential J' pn'dsz—pi”gbn'ds—”,ogzn»ds
. . . . J dt J j
due to unsteady ship motions. The velocity potenti

So+5m

due to the steady forward speed effect is simplified as ¢

—Ux. The total velocity potential can be written as -pu ” ——N;ds— ,0” V ds
¢=-Ux+¢ 4

The fluid velocity in the moving reference frame is _'Od j¢n ds+ ,0”( 5 D¢E|D¢jn ds
therefore

V =Ui +0p ©) . p”( odfn st

wherei is the unit vector ix-direction.

If subscriptj = 2,3 respectively defines tlyeand (10)
z-component of any vector or vector equation, the A modified Stokes theorem may be used to
equation for conservation of momentum can now k&nvert the surface integral ov& +S, in (10) into

written as line integrals. Based on the approximation that
P V, =+Uon the opposite sides of, the surface
J V. -u,)lds

_ 0
dt ”,oqbn ds= _'0,”{( +gz|n; +K integral over S, may also be converted into line
: integrals using the Green theorem. After cancellation,

=23 ©6) the second line of (10) will result in line integrals
Let's evaluate the integrals in (6) term by termalong the contour of the wetted body surf&ge The
The left hand side of (6) may be rewritten waterline integral may further be neglected assuming
small waterline angle. It may be demonstrated that the
—H,0¢n ds = ,0 J'J.¢n ds+,0”—n ds contribution from the third line of (10) can be
replaced by a body surface integration,
The contribution fromS; is zero sincen; =0 on S. pJ"[[ (g¢)}ds and is of a higher

Because S, is independent of time, the time S

body, the contribution ove§, in the last line of (10)

If, in addition ton;= 0 on &, the Bernoulli's is negligible. This finally leads to the following

equation, P = _(6¢ _y9¢ ¢ 1|D¢| N gzj’ is used leading-order force representation
P ot ox _ d
to express the pressure ov@r + S_, we have J;;[ pn; ds= —pag¢njds— .gpgznjds
;i (11)
jj(p+pgz)n ds ﬂ(p+pgz)n ds + Uk [ gn, o
X
C
6¢ 1 o . . .
-p ” | ¢| njds The force distribution over unit ship length is
S +S, therefore

(8)



Ipn dc= —[:t

jjp¢n dc - I,ogzn dc (12)

We may verify that besides the Laplace equation
@ given by (15) satisfies both the body boundary

condition and the linearized free-surface condition.

The differentiation on the right hand side of the abowdote thatW(x,0) =0 and x(y, z,0) =0 are necessary
equation cannot be interchanged with the contoliitial conditions to (15) - (17).

integration when considering large-amplitude motion
problems because the body contour is both time- and

space-varying.

4. Vertical-planeforce using 2D flow solution

Consider a vertical-plane motion problem with a 2- 8
solution of the velocity potential satisfying the
following linearized free-surface condition and bo

boundary condition,

2
2, 20
at? 0z

o9 =Wn,
on

where W is the relative vertical velocity of a ship

section.

onz=0

on Cg(x,1)

(13)

(14)

It is seen that the above boundary value problem
similar to the widely used linear time-domain

potential flow model (e.g. Cummins, 1962) except
that the body boundary condition is satisfied on the
present instantaneous body surfagéx,t) . Thus,y

nd y may be solved based on the solution
techniques for the linear problem. In fact, the problem

gnay be solved through the relation to a set of

requency-domain problems, avoiding solving for the
time-domain velocity potential.

Inserting (15) in (12), the hydrodynamic force
may now be written as

The solution of the velocity potential may be

written as

$=WOOW(Y, zt) + [W(X 1) x(y, zt ~7)d7r (15)

where ¢ is a normalized velocity potential for the,

F(xt)=
D t
= 5| WODH(Cs) + .!;W(X, )K(Cg,t - 1)dr
(18)
WhereR :3 -U i X
Dt ot 1)
H(Cs) = [ pynyde (19)

Cs

is the added mass of the instantaneous body section

impulsive flow due to the body boundary movemen{ihen the oscillating frequency tends to infinity; and
x defines a memory effect due to free-surface wave

propagation;
0% =0
on
¢ =0
and
0%x=0
2
a_)( + ga_/Y =0
ar? 0z
a_X:O
on
x©0)=0
nO) __ou
or 0z

inthe fluid
on Cg(x,t)

on z=0

inthe fluid
on z=0

on Cg(x,t)
inthe fluid

onz=0

(16)

(17)

K(Ce.7) = [ ox(y,z1)ngdc (20)

Cs
is the memory function of a unit impulse calculated

for the present instantaneous body surfagéx,t) . It

may be related to the frequency-domain damping
coefficient for the same body surface through Fourier
transform.

(18) can be rewritten as

F(xt) = —y—DW +u Hyy 4 Oy
Dt 0X 0z
(21)

D t
—a.([W(x,r)K(CB,t—r)dr

where the momentum slamming forc%ﬁwz, is
Z

demonstrated.



5. Discussion done by using a different velocity potential solution in
(12) to represent a high-speed vessel problem, for
If the flow satisfies a free-surface conditign=0 on example. One may also look back to Equation (10) to

z= 0, the memory effect in (18) disappears. The resgRnsider nonlinear effects beyond the leading order.
becomes identical to Faltinsen’s (1990) approach

discussed in his water entry problems.
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The present analysis provides opportunities for
more refined strip-theory simulations. This may be
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Figure2 Calculated, based on (21), non-dimensional respamg#itude operators (RAOs) of heave,
pitch, bow acceleration (FP) and midship bendingnmat of the S175 Containership for
different regular wave amplitudes, Fn=0.25 (&ial., 1998).





