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1. Introduction  
 
When dealing with wave-induced loads and ship 
motions in rough seas, seakeeping theories usually 
only accommodate nonlinear and extreme effects such 
as slamming in separate and empirical ways. An 
attempt is made here to formulate consistently the 
nonlinear hydromechanic forces, including the 
momentum slamming force, acting on a ship 
undergoing large-amplitude motions. The formulation 
is within the framework of potential flow theory. By 
satisfying the exact boundary condition on the time-
varying body surface but assuming linearized free 
surface boundary condition, a 2D time-domain 
solution is presented, which extends Faltinsen’s 
(1990) momentum approach for water entry analysis 
and reveals a consistent theoretical background for the 
nonlinear wave loading and ship motion calculations 
published in Xia et al. (1998). The present 
formulation provides a foundation for accurate and 
practical simulation of seakeeping in rough seas.  
 

2. The momentum equation 
 
The fluid momentum inside a volume Ω  surrounding 
the ship hull can be written as  

���
Ω

= τρ dt VM )(      (1) 

where V is the fluid velocity.  

For an incompressible fluid, the equation for 
conservation of momentum can be written as (Eq 
(9.29), Faltinsen (1990)), 
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In this equation, S is the closed surface for the volume 
Ω  and n, the normal vector to S. The positive normal 

direction points outwards the fluid domain. nU  is the 

normal velocity component of the surface S. nV  is the 
normal component of the fluid velocity at the surface 
S. Assuming the existence of a velocity potentialφ , 

we have 
n

Vn ∂
∂= φ

 and the Gauss theorem gives 
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3. A time-domain strip theory formulation 
 

 
Figure 1   Definition of a control volume to calculate 

hydromechanic force on a ship section. 
 
The equation for conservation of momentum (2) can 
be applied to derive the fluid forces on a strip or a 
section of a ship at forward speed. The reference 
frame is chosen as the moving equilibrium Cartesian 
coordinate system where the oxy plane is on the still 
water surface and traveling at the ship speed, x-axis is 
towards the ship bow and z-axis is upwards. The 
forward speed of the ship appears as an incident 



  

steady flow with velocity U in the opposite x-axis. In 
applying the momentum equation, the control surface 
S can be selected as shown in Figure 1. There are two 
lateral planes 0S  separated by a distance dx exterior 

to the ship. ∞S  is fixed in space and located a certain 
distance away from the ship. The intersection curve 
between the planes and the ship is called ),( txCB . 
We only consider the strip motions and fluid forces in 
the transverse plan. 

We denote ϕ  the ‘oscillating’ velocity potential 
due to unsteady ship motions. The velocity potential 
due to the steady forward speed effect is simplified as 
–Ux. The total velocity potential can be written as 

ϕφ +−= Ux      (4) 

The fluid velocity in the moving reference frame is 
therefore 

ϕ∇+−= iV U      (5) 

where i is the unit vector in x-direction.  

If subscript  j = 2,3 respectively defines the y- and 
z-component of any vector or vector equation, the 
equation for conservation of momentum can now be 
written as  
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Let’s evaluate the integrals in (6) term by term. 
The left hand side of (6) may be rewritten  
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The contribution from 0S  is zero since jn =0 on 0S . 

Because ∞S  is independent of time, the time 

derivative can be moved inside the integral over ∞S . 

If, in addition to jn = 0 on 0S , the Bernoulli’s 

equation, �
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, is used 

to express the pressure over ∞+ SSF , we have 
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Finally, since nn VU =  on BS and FS  and 0=nU  

on 0S  and ∞S , we have  
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Therefore, from (6), the transverse-plane 
hydromechanic force on a ship cross-section can be 
written as 
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A modified Stokes theorem may be used to 
convert the surface integral over ∞+ SSF  in (10) into 
line integrals. Based on the approximation that 

UVn ±= on the opposite sides of 0S  the surface 

integral over 0S  may also be converted into line 
integrals using the Green theorem. After cancellation, 
the second line of (10) will result in line integrals 
along the contour of the wetted body surface BS . The 
waterline integral may further be neglected assuming 
small waterline angle. It may be demonstrated that the 
contribution from the third line of (10) can be 
replaced by a body surface integration, 
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, and is of a higher 

order. If ∞S  is located infinitely far away from the 

body, the contribution over ∞S  in the last line of (10) 
is negligible. This finally leads to the following 
leading-order force representation 
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The force distribution over unit ship length is 
therefore 
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The differentiation on the right hand side of the above 
equation cannot be interchanged with the contour 
integration when considering large-amplitude motion 
problems because the body contour is both time- and 
space-varying. 
 

4. Vertical-plane force using 2D flow solution  
 
Consider a vertical-plane motion problem with a 2-D 
solution of the velocity potential satisfying the 
following linearized free-surface condition and body 
boundary condition,  
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where W is the relative vertical velocity of a ship 
section. 

The solution of the velocity potential may be 
written as 

� −+=
t

dtzyxWtzytxW
0

);,(),();,(),( ττχτψϕ  (15) 

where ψ  is a normalized velocity potential for the 
impulsive flow due to the body boundary movement; 
χ  defines a memory effect due to free-surface wave 
propagation;  
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and 
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We may verify that besides the Laplace equation 
ϕ  given by (15) satisfies both the body boundary 
condition and the linearized free-surface condition. 
Note that 0)0,( =xW  and 0)0;,( =zyχ  are necessary 
initial conditions to (15) - (17).  

It is seen that the above boundary value problem 
is similar to the widely used linear time-domain 
potential flow model (e.g. Cummins, 1962) except 
that the body boundary condition is satisfied on the 
present instantaneous body surface ),( txCB . Thus, ψ  
and χ  may be solved based on the solution 
techniques for the linear problem. In fact, the problem 
may be solved through the relation to a set of 
frequency-domain problems, avoiding solving for the 
time-domain velocity potential. 

Inserting (15) in (12), the hydrodynamic force 
may now be written as 
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where 
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is the added mass of the instantaneous body section 
when the oscillating frequency tends to infinity; and 
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is the memory function of a unit impulse calculated 
for the present instantaneous body surface ),( txCB . It 
may be related to the frequency-domain damping 
coefficient for the same body surface through Fourier 
transform.  

 (18) can be rewritten as 
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where the momentum slamming force, 2W
z∂

∂µ
, is 

demonstrated.  

 



  

5. Discussion  
 

If the flow satisfies a free-surface condition 0=ϕ  on 
z = 0, the memory effect in (18) disappears. The result 
becomes identical to Faltinsen’s (1990) approach 
discussed in his water entry problems.  

Expression (18) is useful for not only transient 
water entry problems, but also seakeeping problems as 
it accounts for wave interactions. Based on (18) and 
(21), Xia et al. (1998) predicted heave, pitch, bow 
acceleration and mid-ship bending moment RAOs of 
the S175 Containership at different wave amplitudes, 
see Figure 2. The solid lines represent linear 
prediction. The nonlinear motion and structural 
loading predictions compared consistently well with 
the experimental results obtained by O’Dea et al. 
(1992) and Watanabe et al. (1989). It shows that if the 
concept of RAO is still to be used in motion 
assessment or design optimization, the RAOs should 
be calculated at different wave amplitudes for 
different sea states. The non-linear evaluation is 
particularly important for the bending moment 
because linear theories usually provide unsafe 
predictions.  

The present analysis provides opportunities for 
more refined strip-theory simulations. This may be 

done by using a different velocity potential solution in 
(12) to represent a high-speed vessel problem, for 
example.  One may also look back to Equation (10) to 
consider nonlinear effects beyond the leading order.  
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Figure 2   Calculated, based on (21), non-dimensional response amplitude operators (RAOs) of heave, 
pitch, bow acceleration (FP) and midship bending moment of the S175 Containership for 
different regular wave amplitudes, Fn=0.25 (Xia et al., 1998). 




