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INTRODUCTION 

We proposed a concept of floating wind power plant, 
which is composed of slender beams and lower-hulls so 
that the structure is constructed in lightweight possible 
for its propulsive performance. The structure is 
advancing with sails and propellers, which are equipped 
under the lower-hull, and it is navigated so that wind 
turbines are in service at beam wind. Many vertical struts 
are equipped on lower-hulls, which induce a lateral lift 
force to counter the wind drag force. We called this 
structure VLMOS (Very Large Mobile Offshore 
Structure). Since the plant is in service at an ocean with 
wind and waves, the hydroelastic behavior is one of 
major concerns. We propose pFFT-NASTRAN coupling 
technique for this problem. Since the structure is very 
large, a great number of panels are required to get an 
accurate solution. The pFFT (precorrected Fast Fourier 
Transformation) technique is effective to accelerate the 
numerical computation. The NASTRAN by 
MSC-software is one of popular commercial FE codes in 
the shipbuilding industry, and it gives trusty numerical 
results for the variety of structural problems. 

 
PRECORRECTED FFT 

The pFFT technique has been developed by Phillips 
and  (1997) to accelerate the electrostatic analysis of 
complicated 3-D structures. Korsmeyer et al. (1999) has 
extended this method to the periodic free surface flow. 
We apply this technique to the hydro-elastic problem of 
the very large mobile offshore structure.  

We solve the problem the linearized radiation/ 
diffraction problem in the frequency domain. It is 
assumed in this problem that the fluid is ideal, the flow is 
irrotational and the wave slope is small. Under the above 
assumptions, th  fluid velocity is a scalar potential e
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, for  and 3x∈ℜG ω is the angular frequency 
of the incident waves. The linearized free surface 
condition is represented by  
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where is the wave number of the incident waves. In 
case of the deep water, 

K
2K ω= g , where is the 

gravitational acceleration. It is noted that the advance 
speed of the structure is neglected for the sake of 
simplicity, although the VLMOS is slowly moving to 
induce the lift force. 
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It is well known that the integral equation to be solved 

for the velocity potential appears in the form 
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where is the portion of the surface of the structure 
under analysis for which  when at rest, 

bS
0z < ( )xν G

 is 
its unit surface normal di ected into the fluid domain. 
The Green function 
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( )0J x  is the zeroth-order Bessel function. The Green 
function can be calculated quickly and accurately by a 
subroutine, which is found in a book by Kashiwagi et al. 
(2003). 
 
NUMERICAL ALGORITHMS 

The numerical algorithms of the pFFT is available in 
Korsmeyer et al. (1999) and in Phillips and White (1997). 
Following their algorithms, we show the procedure 
briefly for the convenience. 
 A straight forward method for solving on the offshore 
problem is to discretiz the surface with  planar 
elements upon which the potential and its normal 
derivative are taken to be constant and to enforce the 
discrete equation at  collocation points on S , 
usually taken to be the element centroids. We proceed in 
this manner and arrive at the linear equation system 

bS N

N b

[ ]{ } [ ]{D P }ν∂ΦΦ = ∂              (4) 

where the N N× influence matrices are  
G

( ) ( ),

2
j

i jS
ij

G x x dS x i j

i j

ν

π

 ′ ′∇ ≠

=

∫
GG G Gi

 (5) 

and 
( , , ) ( )

j
ij iS

P G x x dS xω′ ′= ∫
G G G               (6) 

in which jS  is an element of the surface , with 
constant surface normal vector 
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.If equation (4) is 
sufficiently well conditioned, it may be solved by an 
iterative method, such as GMRES), with order-  cost. 2N
 The acceleration of the solution of (4) is accomplished 



by filling only an order-  subset of [N ]D  and [ ]P , 
and computing the application of [ ]D  or [ ]P  to a 
vector in two parts, that is: 
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with  and  computed by FFT convolution 
integral technique, which costs only order- . The 
computation is proceeded as the following steps. 

{ fard { farp
lnN N

Grid set-up: Overlay the problem geometry with a 
uniform right-parallelepiped grid. Find the nearby 
elements of a given element, which are those elements 
in the 27 cells that share a vertex with the given 
element's cell. Set point-singularities on the grid at the 
cell vertices. 

Projection operators: Numerically evaluate the 
operators, which can replace the set of element 
singularity distributions in the cell with an equivalent 
set of point singularities on the grid. This is done with 
the singular value decomposition. 

Interpolation operators: Numerically evaluate the 
interpolation operators. These are essentially the 
transpose of the projection operators. 

Direct interaction and precorrection: Directly 
compute the small number of nearby influences for 
each element. Use the projection operators, the Green 
function, and the interpolation operators to 
pre-compute and subtract these nearby influences from 
the grid-based influences for these same nearby 
elements.. 

Projection: Project the element singularity distributions 
to point singularities on the grid by applying the 
projection operators. 

Convolution: Compute the potentials at the grid points 
due to the singularities at the grid points according to 
the Green function (2) by FFT-accelerated 
convolution. 

Interpolation: Interpolate the grid point potentials onto 
the elements by applying the interpolation operators 
and add these to the precorrected direct influences. 

 
EQUATION OF MOTION 

A popular method to analyze the elastic behavior of a 
thin structure is to use the bar element of a commercial 
FE code. In the NASTRAN program, the displacement 
of the structure is represented by a vector { }ς  of the 
nodal displacement, which has six degrees of freedom, at 
both ends of the bar elements. The vector is represented 
by 
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where the subscript n of nmς is the nodal number,  
indicates the displacement and the rotation at the node 

and is the total number of the nodes. 
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Using the function of the eigen mode analysis of the 
NASTRAN, we get an eigen mode of the structure 

n . Since an eigen mode is orthogonal to the other 
eigen modes, the nodal displacements are represented by 
a summation of the eigen modes as 

{ } ( ){ }.n
n

n

qς ς= ∑               (10) 

After discretizing with the FE, the equation of motion for 
the structure moving with a circular frequency of ω is 
represented by 
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where, ]M  is the mass matrix, [ ]K  is the stiffness 
matrix, { }f is the external force vector acting on the 
nodes. Since the eigen modes by the NASTRAN are 
normalized, we get 
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On the contrary, the definition of the eigen modes 
suggests  
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Thus the mass matrix has the following relation with the 
stiffness matrix 
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Substituting (10) into (11) and utilizing (14), we get 
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(15) suggests that the mass matrix and the stiffness 
matrix are not necessary for the equation of motion with 
the eigen modes by the NASTRAN, even if it contains 
the interaction of the fluid motion. 

In order to compute the interaction with the fluid 
motion, the external force is divided into two 
components, which are the radiation force and the 
diffraction force as follows: 
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where a  is the amplitude of incident waves. 
Substituting (16) into (15), we get 
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(17) is the equation of motion for the amplitude of the 
n-th eigen mode. 
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HYDRODYNAMIC FORCE 

Since the NASTRAN out-put data gives only a 
discrete information for the displacement of the structure, 
it is necessary to reconstruct the continuous data of the 
displacement for the computation of the hydrodynamic 



forces. The present process is similar to Yoshida's idea 
(Yoshida and Ozaki : 1984), however it is modified to 
suit the data structure of the NASTRAN and to gain the 
accuracy. In order to reconstruct it from the NASTRAN 
out-put data, the following assumptions are used. 
(a)The displacement between two adjacent nodes is 

linear. 
(b)The displacement due to the revolution at the node is 

negligible. However, the rigid revolution, i.e. the 
revolution around the element axis, is taken into 
account. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When the -th element is defined by the origin-node  
and the end-node , the velocity  at a point 
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the element is given by 
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and 
          j l kL x x= −

G G . (21) 
If we define the radiation velocity potential for the 
-th mode as n
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the boundary condition for it may be 
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Therefore, the boundary condition for the radiation 
problem is given by 
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where ν  is the normal vector inward to the fluid.  
The diffraction problem for the hydro-elastic motion is 

as same as that for the rigid structure. The velocity 
potential of the incident wave is defined as 
       ( cos sin

0
Kz iK x ye )χ χφ − += . (25) 

The boundary condition is given by 
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where dφ  is the velocity potential for the diffraction 
problem. 

Once we get the velocity potential with the pFFT 
technique, the pressure of the fluid is easily obtained, and 
integrating it the hydrodynamic forces are computed. If 
the overall velocity potential is , it is represented as Φ
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The linearized pressure due to this velocity potential is 
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( )nwhere 0D dφ φ φ= +  and Z  is the vertical  
component of the -th eigen mode. In order to compute 
the nodal force in (17), the hydrodynamic forces acting 
on an element is decomposed into the nodal forces. Thus, 
the following assumptions are used. 

n

Fig.1 Definition of the element coordinate and
the earth fixed coordinate. (a)Moments acting on a node are negligible. 

(b)As an exception of the assumption (a), the twisting 
moment is taken into account. However, since it is 
impossible to distribute the twisting moment onto two 
nodes consistently, it is evenly distributed. 

(c)Similarly, the axial force is equally distributed onto 
two nodes. 

 

z
y

ey

ex

ez

x

k

l
kxG

lxG

ef
G

sf
G

xe
M
G

 
 
 
 
 
 
 
 
 
 Fig.2 Definition of forces acting on a element. 
 
 

According to the definitions shown in Fig.2, the 
equation of equilibrium for each element is given by  G G
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G G G G Gwhere ( ) /x l k l ke x x x x= − −  is an unit vector 
representing the axial direction of the element, jS  
denotes the surface of the -th element, j sf
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are nodal force acting on the origin node and end node 
respectively and 

exM
G

 is a moment in axial direction 
acting on the element. Combining (29) and (30), and 
solving it , we can get the nodal forces. In the actual 
procedure, according to (28) and (17), the radiation 
forces and the diffraction forces are separately computed  

=

 
VORTEX INDUCED FORCE 

Since the VLMOS is composed of thin structural 
component, the vortex induced force plays an important 
role at the resonant frequency for the elastic modes. It is 
assumed that the vortex induced force is represented as a 
drag force 

 1
2D Df C Uρ               (32) U

where Df is the drag force per unit length, DC is the 
drag coefficient and U is the relative flow velocity 
taken at the section center of the lower-hull. Since (32) is 
not sinusoidal in time, the Fourier averaged value is used 
for the drag force in the frequency domain. In addition, 
an iterative method is used to solve the equation of 
motion for taking the nonlinearity of the drag force into 
account accurately. Further assumption is that the vortex 
induced force is parallel to the direction of relative 
velocity. The vortex induced force is integrated on the 
element and decomposed into the nodal forces with the 
same manner as presented in the previous section. 
 
RESULTS 

We have carried out a model experiment for 
measuring the hydroelastic behavior of the VLMOS in 
waves with 1/100 scale backbone type elastic model.  

The dimensions of the model are 4m length and 4.5m 
width. A picture of the model is shown in Fig. 3. Fig. 4 
shows a comparison of strains at the lower hull between 
the numerical results and the experimental ones in head 
waves. Fig. 5 shows the effect of the vortex induced 
force. It is apparent that the vortex induced force plays 
an important roll at the resonant frequency of the 
two-nodes vibration mode of the transverse beam, where 
the drag coefficient is 1.0.  

Further results will be presented at the workshop. 
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Fig.3 Picture of the experimental model at
the towing tank of Osaka University 
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Fig.4 Comparison of  the strain of the lower
hull at χ=180deg 
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 Fig.5 Effect of the vortex induced force for

the strain of the transverse beam at
χ=180deg 

 
 
 
 
 




