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1. INTRODUCTION

It is well known that some infinite structures, like the
submerged horizontal cylinder and the underwater mo-
untain ridge, can support trapped modes. Evans &
Kuznetsov (1997) gave a detailed review of the theo-
retical developments achieved in the recent decades in
the studies on the existence of trapped waves within the
context of linearized theory of waves in finite depth wa-
ter as well as deep water. For sufficiently long waves it
is possible to adopt the linearized shallow-water equa-
tions. This simplification enables a number of explicit
solutions for trapped modes to be constructed for par-
ticular bottom geometries (see e.g. Le Blond & Mysak,
1978).

The phenomenon of wave trapping is referred to
waves which can travel unchanged along the infinite
3D structure, and decay exponentially in the transverse
direction. Our interest is in studying of the manifes-
tation of trapped modes revealed for an infinitely long
structure in the case of the corresponding finite-length
structure. Two problems are considered:
1) a floating elastic plate;
2) a bottom topography with a piecewise-constant fluid
depth.

The waves are generated by an external periodic
pressure acting either on an elastic plate (problem 1)
or on a free surface over a bottom topography (prob-
lem 2). The fluid is assumed to be incompressible,
inviscid and its motion irrotational. The frequency of
external loading is such that the length of generated
waves is significantly greater than the depth of the
fluid and the linear shallow-water theory can be used.
The boundary-integral-equation method is applied and
the action of the periodic surface pressure can be con-
sidered for an elastic plate (a bottom topography) in
problem 1(2) of arbitrary planform. However, the main
attention is paid to the rectangular planform.

2. AN ELASTIC FLOATING PLATE

An elastic plate of rectangular plan geometry, with
length L and breadth B is considered, see Fig. 1. The
plate is freely floating on a fluid layer of constant den-
sity ρ and depth h. Two regions which correspond
to the fluid-plate region Ω1 and the fluid region Ω2

are distinguished. These regions are separated by the
juncture boundary S.

The external periodic pressure of the form

p(x, y, t) = P (x, y) exp(−iωt)

acts on the plate surface, where x and y are the hori-

zontal coordinates with the origin at the center of the
plate, t is time. The dark circle in Fig. 1 indicates
the region of external pressure application. Within the
scope of the linear theory, the motions of the plate and
fluid can be assumed to be periodic in time with the
same frequency ω. Hereafter, we will represent any
time-harmonic function, say f(x, y, t) as the real part
of F (x, y) exp(−iωt) by introducing a complex func-
tion F (x, y) that depends on the spatial variables only.
The velocity potentials describing the fluid motion in
the regions Ω1 and Ω2 are denoted by Φ1(x, y) and
Φ2(x, y), respectively. The spatial part of the elevation
of the water surface or the deflection of the structure
are given by a complex function W (x, y).

Figure 1: Definition sketch

The deflection of the plate is assumed to be gov-
erned by the equation

D∆2W − ρ1h1ω
2W + gρW − iωρΦ1 = −P (x, y) (1)

(x, y ∈ Ω1)

where ∆ ≡ ∂2/∂x2 + ∂2/∂y2 is the 2-D Laplacian, ρ1

is the plate density, h1 is the plate thickness, g is the
acceleration due to gravity.

According to linear shallow-water theory, we have

W = − i(h − d)

ω
∆Φ1 (x, y ∈ Ω1) (2)

W =
iω

g
Φ2 (x, y ∈ Ω2)

where d = ρ1h1/ρ is the draft of the plate.



Since the plate is freely floating, the bending mo-
ment and shear force should vanish at the edges of the
plate:

∆W = ν1

∂2W

∂s2
,

∂∆W

∂n
= −ν1

∂3W

∂n∂s2
(x, y ∈ S)

(3)
where ν1 = 1− ν, n and s denote the normal and tan-
gential directions, ν is Poisson’s ratio. At the corners
of the plate, there can be concentrated shear force to
compensate for the torsional moment along the edges
of the plate. The vanishing of this shear force leads to

∂2W

∂x∂y
= 0 (x = ±B

2
, y = ±L

2
) (4)

In the free-water region, the potential Φ2(x, y) sat-
isfies the equation

∆Φ2 + k2
0Φ2 = 0 (x, y ∈ Ω2), k0 = ω/

√

gh (5)

Along the juncture boundary S, the continuity of
mass flux and depth-mean pressure leads to the follow-
ing matching conditions:

∂Φ1

∂n
=

h

h − d

∂Φ2

∂n
, Φ1 = Φ2 (x, y ∈ S) (6)

Far from the plate, the radiation condition has to
be imposed

lim
r→∞

√
r
( ∂

∂r
− ik0

)

Φ2 = 0, r =
√

x2 + y2 (7)

The solution of the boundary-value problem in re-
gion Ω1 can be decomposed as

Φ1(x, y) = Φ0(x, y) +

3
∑

m=1

Ψm(x, y)

Here the potential Φ0(x, y) is the solution of the formu-
lated problem in the case of infinite elastic plate. This
solution can be obtained by integral Fourier transforms
(see e.g. Cherkesov, 1973). The functions Ψm(x, y)
(m = 1, 2, 3) satisfy the following equation

∆Ψm + µ2
mΨm = 0 (8)

where µm (m = 1, 2, 3) are the roots of the equation

D

ρ
µ6 + (g − dω2)µ2 − ω2

h − d
= 0 (9)

The positive real root of this equation is denoted by
µ1, and two complex-conjugate roots located in the
first and the fourth quadrants of the complex plane
are denoted by µ2 and µ3, respectively.

The Helmholtz-type equations (5) and (8) are solved
by the boundary-integral-equation method involving
the Green functions, and the finite-difference method is
used for discretization of the boundary conditions (3)
and (4) at the edges of the plate. This method has been

used earlier for the study of the hydroelastic response
of a mat-type floating runway in regular, oblique waves
by Ertekin & Kim (1999) and by Sturova (2001).

Trapped modes of an elastic floating strip

The existence of trapped mode solution for an elastic
strip floating on shallow water was shown by Tkacheva
(2000). Let us briefly consider the solution of this prob-
lem. The elastic strip with the finite width B and
infinite length is considered. Trapped modes are non-
trivial solutions of the homogeneous boundary-value
problem, formulated as consequence of Eqs. (1), (2)
and (5)

D

ρ
∆3Φ1 + (g − dω2)∆Φ1 +

ω2

h − d
Φ1 = 0 (10)

(|x| ≤ B

2
, |y| < ∞)

∆Φ2 + k2
0Φ2 = 0 (|x| >

B

2
, |y| < ∞) (11)

with the free-edge conditions that follow from (2) and
(3)

∆2Φ1 = ν1∆
∂2Φ1

∂y2
, ∆2 ∂Φ1

∂x
= −ν1∆

∂3Φ1

∂x∂y2
(12)

(x = ±B

2
, |y| < ∞)

and the matching conditions resulting from (6)

∂Φ1

∂x
=

h

h − d

∂Φ2

∂x
, Φ1 = Φ2 (x = ±B

2
, |y| < ∞)

(13)
The solution of Eqs. (10) and (11), corresponding

to waves of wavenumber λ travelling along the strip,
can be sought in the form

Φj(x, y) = Ψj(x) exp(iλy), j = 1, 2 (14)

The mode is said to be trapped if

Ψ2 → 0 (|x| → ∞)

Then the solution for Ψ2(x) can be written with the
help of (11) and (14), as:

Ψ2(x) = α+ exp(−βx) (x > B/2)

Ψ2(x) = α− exp(βx) (x < −B/2)

where β2 = λ2 − k2
0, and α± are unknown constants.

The value of β should be real and positive, conse-
quently λ > k0. This inequality implies that the trapped
modes in the floating elastic strip cannot be excited by
incoming waves, because for incoming wave inequality
λ ≤ k0 is always valid (see e.g. Sturova, 1998).

Trapped modes in the floating elastic strip exist
only at nonzero draft of the strip. They are represented



by the even function of x (Tkacheva, 2000). The solu-
tion for Ψ1(x) can be written in the form

Ψ1(x) =

3
∑

m=1

cm cosh(σmx) (|x| ≤ B/2) (15)

where cm are unknown constants and the values σm

are determined from the equation similar to (9) upon
the substitution of (14) in (10) with due regard to (15).
From the free-edge conditions (12) and the matching
conditions (13) we obtain the system of linear alge-
braic equations of the fourth order. Trapped modes
correspond to the vanishing of the determinant of this
system.

A special feature of trapped modes in the floating
elastic strip is that for each d > 0 they exist only in
the region of the frequencies 0 < ω < ωcr. The critical
value ωcr increases with the draft.

3. A BOTTOM TOPOGRAPHY

Let h1 be the depth of the fluid inside a region Ω1

bounded by the contour S and h2 be the depth of the
remaining fluid Ω2. We restrict ourselves to the case
where the localized external pressure P (x, y) is located
inside the region Ω1. This problem can be considered
as the particular case of the previous problem.

According to the linear shallow-water theory, the
velocity potentials Φj(x, y) (j = 1, 2) are found by solv-
ing the system of equations

∆Φ1 + k2
1Φ1 = − iω

gρh1

P (x, y) (x, y ∈ Ω1) (16)

∆Φ2 + k2
2Φ2 = 0 (x, y ∈ Ω2) (17)

with matching conditions along the boundary S

γ
∂Φ1

∂n
=

∂Φ2

∂n
, Φ1 = Φ2 (x, y ∈ S) (18)

where γ = h1/h2, kj = ω/
√

ghj (j = 1, 2).
In the far field Φ2(x, y) must satisfy the radiation

condition by analogy with (7).
The solution of Eq. (16) is sought in the form

Φ1(x, y) = Φ0(x, y) + Ψ(x, y)

where Φ0(x, y) is the solution of the formulated prob-
lem in the case of a fluid with a constant depth h1 and
Ψ(x, y) has to be determined. The function Φ0(x, y) is
found by integral Fourier transform (see e.g. Cherkesov,
1973). The function Ψ(x, y) satisfies the equation

∆Ψ + k2
1Ψ = 0 (x, y ∈ Ω1) (19)

The solution of the Helmholtz-type equations (17) and
(19) can be obtained by the method of integral equa-
tions, which has been used to study surface wave diffrac-
tion on a rectangular pit (Williams, 1990).

Trapped modes of a rectangular ridge

Let us consider the bottom topography of uniform width
B and infinite length. The depth of the fluid in the do-
main |x| < B/2, |y| < ∞ is equal to h1, and the depth
of fluid is equal to h2 in the remaining part.

To determine the trapped modes for this topogra-
phy, we have to find a nontrivial solution of the homo-
geneous equations for the corresponding velocity po-
tentials

∆Φ1 + k2
1Φ1 = 0 (|x| < B/2, |y| < ∞) (20)

∆Φ2 + k2
2Φ2 = 0 (|x| > B/2, |y| < ∞) (21)

with matching conditions on the straight lines |x| =
B/2 similar to (18).

The solutions of Eqs.(20) and (21) are sought in the
form

Φj(x, y, t) = Ψj(x) exp (iλy), j = 1, 2

In the far field for trapped modes we have

Ψ2 → 0 (|x| → ∞)

The net result is that the trapped modes should satisfy
the following equations:
for symmetric modes

tanh
σB

2
= − β

γσ
(22)

for antisymmetric modes

tanh
σB

2
= −γσ

β
. (23)

where σ2 = λ2 − k2
1, β2 = λ2 − k2

2. Eqs. (22) and (23)
can have real roots only for γ < 1 (h1 < h2) in the
frequency range λ

√
gh1 < ω < λ

√
gh2. Hence, only

ridge-type topography possesses waveguide properties.
The trapped modes exist for any frequency in contrast
to the first problem. The number of modes increases
indefinitely with increasing frequency, which is a fea-
ture of the shallow-water approximation.

4. NUMERICAL RESULTS

The isolines of amplitudes of the deflections of the elas-
tic plate or the elevations of the water surface, as well
as the scattering diagram for the surface waves in far
field, will be presented at the Workshop. An example
is given in Fig. 2 which shows the scattering diagram
for the floating elastic plate.

The material properties, water depth and the main
dimensions are taken as:

D = 1.96 · 1011 N · m, ν = 0.3, h = 50 m,

B = 1 km, d = 5 m



The critical frequency for the trapped mode in this
elastic strip of infinite length is equal to ωcr ≈ 0.199s−1

(ωcr

√

h/g ≈ 0.450).
Two values of the plate length are considered:

L = 5 km (case 1) and L = 7 km (case 2)

The first case corresponds to the project of the floating
runway (Ertekin & Kim, 1999).

The distribution of the external pressure in (1) has
the form

P (x, y) = agρf(R)

Here a is a coefficient with a dimensionality of length,
the function f(R) is chosen as

f(R) = 1 − (R/l)2 (R < l), f(R) = 0 (R > l)

where R =
√

(x − x0)2 + (y − y0)2, x0 and y0 are the
coordinates of the epicenter of the external pressure
region.

It is known, that in the considered problems the
amplitudes of surface waves in the far field decrease
with increasing distance from the origin of coordinates
r as r−1/2. Then the amplitudes of surface waves in
the far field can be written as

|W |
a

=
ωh2

(h − d)
√

gr
Q(θ) (r → ∞)

where θ = arctan(y/x).
The behavior of the dimensionless function Q(θ) is

shown in polar coordinates in Fig. 2 for l = 100 m.
The left part of this figure corresponds to the plate
with L/B = 5 (x0 = 0, y0 = −1250 m), and the right
one – to L/B = 7 (x0 = 0, y0 = −2250 m). The dis-
tance of the epicenter of the pressure region from the
plate edge y = −L/2 is equal to 1250 m in both cases.
The solid, dashed and dot-and-dashed curves in Fig. 2
correspond to the subcritical frequency ω

√

h/g = 0.3,

the critical frequency ω
√

h/g = 0.45 and the super-

critical frequency ω
√

h/g = 0.6, respectively.

Figure 2: Scattering diagram Q(θ)

From this figure we notice that the shape of scatter-
ing diagram essentially differs at ω < ωcr and ω > ωcr.
Trapped modes in elastic strip exist only for subcritical
frequencies. Waveguide property can be manifested at
ω < ωcr: the surface waves with the largest amplitude
take place at θ = π/2, that is along the positive y-
axis. This effect increases with the aspect ratio of the
plate. At the supercritical frequency the surface wave
amplitude is minimum at θ = π/2, and the surface
waves spread in the transversal direction. At the criti-
cal frequency the scattering diagram has nearly circular
shape.

5. CONCLUSION

The behavior of waves generated by periodic pressure is
considered within the linear shallow-water theory. An
effective method for investigating the dynamics of an
elastic floating platform of arbitrary shape is proposed.
A particular case of this problem is considered also:
a bottom topography with a piecewise-constant fluid
depth. Manifestation of waveguide properties of the
elongated rectangular structures is shown.
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