Sloshing induced impact with air cavity in rectangular tank with a high filling ratio
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The motivation for the undergoing study isto better understand the
sloshing induced impacts that may occur inside a container par-
tialy filled with liquid. Transport of liquefied natural gas (LNG)
in prismatic membrane tanks exemplifies an area of application
where impacting resonant waves cause loads that define the ulti-
mate limit strength of the local structure. Model tests are usually
performed with a small scale model, typically 1:50. Physical and
economical considerations in genera also restrict other test para-
meters, so that the liquid phase is water and the gasis air with a
ullage pressure equal to the ambient atmospheric pressure. The
model tank structure is made rigid, so that hydroelastic effectsin
the model tests are assumed to be negligible. Considering the dif-
ferences in scale and physical parameters, the estimation of full-
scale loads from model test pressure measurementsisagreat chal-
lenge. A detailed knowledge of the impact flow is a necessary
premise.

High filling sloshing induced impacts are studied by experiments
as well as by use of theoretical and numerica models. A two-
dimensional flow is assumed in the theoretical trestment and
aimed at in the experiments. The tank shape is rectangular. The
idea in the experiments is to use high speed cameras and particle
image velocimetry (PIV) technique to capture the details of the
impact flow. Pressures are measured in the impact zone.

Categorization of impact types

The impact flow occurring for high filling sloshing with a right
corner can be classified in three categories. For the highest fill-
ing ratios, even small excitation amplitudes for oscillatory motion
with frequency content around the first linear eigenfrequency lead
to impacts where a significant part of the tank roof is wetted. The
free surface just prior to impact is characterized by a high curva-
ture near thewall, which turnsinto athin, fast jet shooting upwards
and hitting the wall. The impact pressures are highly localized in
the corner. This is denoted as the local vertica jet flow impact,
Fig. 1. For lower filling ratios, or for an impact following a period
with no impacts, the free surface may be smooth as the roof is hit.
If the free surface curvature at the intersection with the tank wall
islow, aflat impact occurs, Fig. 2. The resulting impact pressure
is high. The narrow pressure peak moves rapidly out along the
tank roof. Thisisthe flat impact type. The final impact type isthe
impact with an air cavity in the corner between the tank wall and
roof. This occurs when the free surface curves down towards the
wall just before hitting the tank roof.

Impactswith air cavity

Figure 3 shows a schematic view of an impact with air cavity inthe
corner. Thiskind of impact occurs frequently for high filling ratio
sloshing in rectangular tanks undergoing regular oscillatory trans-
lational motions. As a seemingly steady-state free surface motion
is reached, the local free surface features in vicinity of the walls
are complex. It appears that the previous tank roof impact in the
same corner result in aflattening of the surface, which again leads

V - jet velocity

! $ Free surface after impact

nnmm

Figure 1: High curvature free surface impact with high velocity jet
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Figure 2: Flat impact

to a downward curving surface towards the wall and eventually
the entrapment of an air cavity. An impact of this type is shown
in Fig. 4. In this measurement, 1250 frames were captured per
second, and the air cavity oscillation is clearly showing when the
images are played back at afew frames per second.

Figure 5 shows the tank geometry and positioning of pressure sen-
sors. The pressures are measured with a sampling frequency of
19.2kHz, and afiltering of 5kHz is applied. The trigger signal for
the camera is also acquired, so that the pressures can be related
to agiven video frame. Measured pressures during the impact de-
picted in Fig. 4 are shown in Fig. 6. The air cavity oscillation is
obvious, and the frequency isfound from the power spectrum pre-
sented intotheright in Fig. 6. The frequency starts at about 90Hz,
and isgradually increasing up to 120Hz asthe size of the air cavity
decreases. The change in size is probably due to a leakage of air
through the pressure cell fittings. Calculation of the frequency of
oscillation by use of a boundary element approach is presented in
the following.

Numerical and theoretical treatment of entrapped air impact

Figure 7 shows an entrapped air pocket in the top right corner
of a rectangular tank during sloshing induced impact. Figure 8
presents the boundary value problem, which is the basis for the
bubble eigenvalue formulation. In the figure, the boundary condi-
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Figure 3: Impact with oscillating air cavity

Figure 4: Pictures of impact with air cavity

tions are satisfied on z = 0, which means that the wall condition
d¢/dn= —d¢$/dz= 0wheren isthe unit normal vector pointing
into the fluid. d¢/dn is used for generality. ¢ is the velocity po-
tential in the fluid. C is a constant derived in the following. The
vertical tank wall at the impact position is modeled by a mirror-
ing about the z axis. The fluid acceleration is assumed to be much
larger than the gravitational acceleration g, so that the linearized
free surface condition is ¢ = 0. The equation of continuity of the
air cavity can be expressed as

dQ dp
— + Q=0
Pa
Q is the air cavity volume and p is the air density. The rate of
change of the air pocket volume can be written as
o, 209
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The factor 2 originates from the mirroring, as the air pocket vol-
ume in the calculations is two times the actual volume illustrated
inFig. 7. The encapsulated air is assumed to follow the adiabatic
pressure-density relationship
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Figure 5: Position of pressure sensors in the tank

Pressure (Pa)
10000+

x10*

80001

)
T

6000

(3}
T

40001

20001+ =f:

Power spectrum
»

w
T

ob

—-2000F

N

—-4000F

-6000F

I i L L | G Bt A
0.18 0.2 0.22 0.24 0.26 0 50 100
t(s) Frequency (Hz)

i
0.16

i
0.14

Figure 6: Measured pressures during impact with corresponding
power spectrum

where p is air pocket pressure, which is assumed constant within
the pocket volume. p, and p, are the pressure and density at the
time of closure of the air pocket, respectively. A y value of 1.4
is assumed. Equations (1) and (3) are linearized by expressing
p = pa+ p1 Where p1/pa < 1. From a Taylor series expansion it
follows that
Pogyth )
Pa Y Pa
The volume and density changes are small as a consequence of the
previous assumption, which meansthat (2 —Qq)/Q < 1and (p —
pa)/p < 1. Qq istheinitia air pocket volume. The combined
Egs. (1), (2) and (3) give the change in air pressure
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The free surface condition on the bubble is found from Bernoulli’s
equation. The fluid acceleration is assumed to be dominated by
the compressibility effects of the air, so that the effect of gravity is
neglected. The free surface condition isthen linearized,
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Figure 7. Entrapped air pocket during impact
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Figure 8: Boundary value problem and element discretization

where py and py are the pressure and density of the fluid, respec-
tively. Surface tension is neglected. The pressure is continuous
across the free surface, so that py = p. Using this and differenti-
ating Eq. (6) with respect to time resultsin

9?9 dpy
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Substitution of Eg. (5) resultsin
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The air pocket undergoes harmonic pressure, density and volume
oscillations, so that 92¢/dt? = —w2¢, where ay, is the natural
frequency for the air pocket. The relation between ¢ and d¢/dn
on the air pocket boundary is
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where ¢ is constant across the boundary.

Discretization and eigenvalue solution
Green's second identity is applied to the velocity potential. The
velocity potentia at apoint = (X,2) is
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where Sisthe boundary of thefluid domain. s(¢) istheintegration
variable along the boundary and &€ = (&, §) isthe (x,z)-coordinate
of salong the boundary within the curveintegral. G isthe Rankine
source.

The free surface, tank roof and air pocket surface are discretized
using straight elements with constant source and normal velocity
strength. Thisisillustrated in Fig. 8. d¢/dn is unknown on the

free surface and air pocket surface, while ¢ is unknown on the
tank roof. The free surface is discretized over alength ¢, whichis
typicaly 10 times the size of the wetted wall section and the air
pocket length combined (a+ b). In the far-field, the effect of the
oscillating air pocket is modeled by a vertical dipole in x =0, so
that the contribution from the free surface integral can berewritten.
The velocity potential for x > a+ b+ c is approximated as
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D isaconstant that isdetermined later. Theintegral for a+b+c <
X < o aswell asthe mirror contribution are evaluated by analytical
expressions as described in (1). Assuming that the integration is
along the horizontal axis so that z= 0, these contributions are
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where continuity in the vertical velocity acrossx = a+ b+ c gives
that the vertical dipole strength is
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j=Ne

Ng isthe total number of elements. The numerical approximation
gives
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where ¢j and (d¢/dn); are the constant velocity potential and
normal velocity for element |, respectively. 85; isthe mirror ele-
ment about the z axis from §s;. Equation (14) is set up for = x;
at the center of each element, which gives
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The boundary conditions are used to set up the eigenvalue prob-
lem.
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where FSis the set of all free surface elements, W is the set of
al elements on the tank roof, B is the set containing air pocket
elements and
{ 0 ie(FSB)
k=94

ieW (20)



The coefficients Kjj; and A are derived in the following manner.
The sum over the air pocket elements with contribution from the
velocity potential isthe starting point.
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where ¢y, isthe constant velocity potential on the air pocket bound-
ary. Inserting for ¢y, from Eq. (9) resultsin

1 2ypa

AL 9%
20N~ g proF'/sB n®®

(22)

S isthe air pocket boundary. A reasonable approximation of the
integration of the normal velocity on S5 can be performed by a
simple summation,
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Asj isthe length of element j. The combination of Egs. (21), (22)
and (23) compared to Eq. (19) leads to the following expressions,
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The system of equationsin Eq. (19) is put in matrix form
My=ANy, (26)

and a standard mathematical library utilizing the QZ agorithm is
used to determine the eigenvalues A and the corresponding eigen-
vectors.

The free surface velocity has a square root singularity at the inter-
section points between the free surface and tank wall and tank wall
and air pocket, as long as the intersection line is horizontal. In or-
der to increase the accuracy of the numerical solution, the element
sizeis made smaller towards the singul arities.

Results

Two types of element discretizations are used; one with al ele-
ments on z= 0 and one where the air cavity elements are situated
on the arc of an ellipsoid extending down to z= —a/4. Figure
9 presents the eigenmodes for an air pocket with the same length
as the wetted part of the tank roof, a = b = 0.05m, as well as the
air pocket frequency as afunction of the air pocket length divided
by the wetted tank roof length, a/b. The wetted tank roof length
isb = 0.05m in the calculations. A total of 180 panels are used.
An analytical expression for the air cavity resonance frequency
is developed by Faltinsen (2) for arelated problem, where an air
pocket is entrapped below a structure during a wave impact. The
basis for the analytical result isadightly different boundary value
problem, where the boundary with a zero normal velocity has a
given lenght at one side of the air cavity but goes to infinity at
the other side. A constant normal velocity across the air cavity is
also assumed. The analytical result for the frequency is between
the two curves based on a numerical solution. The eigenmodes,
which represent the oscillation mode, are similar for the air cavity
modeled by elements on z= 0 and elements positioned on an el-
liptical cavity. The difference isin the change of sign of d¢/dn
for the elliptical cavity close to the roof intersection singularity.
Table 1 presents the eigenfrequency of the air cavity for different
calculation methods. It isnow interesting to compare these results
with the experimental findings of Fig. 5-6. Thereal air cavity has
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Figure 9: The left figure shows eigenmodes for a = b = 0.05m.
To the right is the air cavity frequency as a function of a/b for
b = 0.05m. Flat cavity calculations with N5 = 80, Ny = 50 and
N, = 50, while elliptical cavity calculations are with N¢g = 50,
Nw = 50 and N, = 80

Table 1: Calculated air cavity frequency

Air cavity Elements | Elements | Analytical
geometry onz=0 | onélipsoid result
a b arc
(m | (m) (Hz) (Hz) (Hz)
0.025 | 0.05 829 68.4 75.5
0.05 | 0.05 75.0 61.5 67.8
0.05 | 0.025 136.3 110.7 1235
0.025 | 0.025 150.1 123.3 135.6

three-dimensional features, but let us assume an average length of
0.05m in the excitation direction. The wetted part of the tank roof
has a comparable lenght as the extent of the cavity for asignificant
number of oscillations. The calculated air cavity frequency from
the eigenvalue problem with elementsat z=0and b= a = 0.05m
is 75Hz. Thisis areasonable estimate of the measured frequency
of around 90Hz.

Concluding remarks

The eigenvalue solution based on a boundary element approach
can be used to predict the eigenfrequency of an air cavity en-
trapped during a sloshing induced impact. In order to determine
the pressure magnitude, a nonlinear BEM can be applied. Thisin-
volves solving for the full sloshing flow up to and beyond the time
of impact.
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