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1 Introduction

The classical problem of three-dimensional water waves in finite depth when both gravity
and surface tension are present is considered.

The dispersion relation for linearized capillary-gravity waves travelling at a constant
velocity c on water of finite depth h can be written as (see for instance Lamb (1932))

D(κ; λ, β) ≡ (λ + βκ2) tanhκ − κ = 0 (1)

where κ = k∗h is the dimensionless wavenumber. The problem involves two dimensionless
numbers

λ =
gh

c2
and β =

T

ρhc2

where T is the constant coefficient of surface tension, g is the acceleration due to gravity, ρ
is the fluid density. The parameter λ is the inverse of the square of the Froude number and
both parameters are related to the Bond number B = T/ρgh2 by the relation B = β/λ.

Parau, Vanden-Broeck and Cooker (2004) computed fully nonlinear gravity capillary
lumps in water of infinite depth. Their results are consistent with those of Kim and
Akylas (2004) who showed analytically that lumps can bifurcate from linear sinusoidal
waves with wavenumber corresponding to the minimum gravity-capillary phase which is
also a double root of the dispersion relation (1). Three dimensional solitary waves were
also obtained, for a weakly nonlinear model, by Milewski (2005).

Groves and Sun (2004) have shown that fully localised solitary waves also exist in the
case β > 1/3, 0 < λ − 1 � 1. In this region of strong surface tension Kadomtsev and
Petviashvili (1970) derived the well-known KP-I equation as a long-wave approximation
for solutions of the steady gravity-capillary water wave problem which has fully localised
solitary-wave solutions.

In this paper we compute fully nonlinear three-dimensional gravity-capillary solitary
waves of the full Euler equations on finite depth by a boundary integral equation method.
For the case of strong surface tension we compare with solutions of the KP-I equation.

2 Formulation and numerical scheme

The fluid is incompressible and the flow is irrotational. We are only interested in steady
waves which travel at a constant velocity c on water of finite depth h, and we choose
a frame of reference moving with this wave speed. We introduce cartesian coordinates
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x, y, z with the z-axis directed vertically upwards and the x-axis in the direction of the
wave motion. We denote by z = ζ(x, y) the equation of the free surface. Dimensionless
variables are introduced by taking the unit length to be T/ρc2 and the unit velocity to
be c. In terms of the velocity potential function Φ(x, y, z), the problem is formulated as
follows:

∇
2Φ = 0, x, y ∈ R, z < ζ(x, y), (2)

with the boundary conditions

Φxζx + Φyζy = Φz, on z = ζ(x, y), (3)
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2
, on z = ζ(x, y), (4)

Φz = 0, on z = −
1

β
. (5)

As we are looking for fully localised three-dimensional solitary waves, we have used the
conditions

(Φx, Φy, Φz) → (1, 0, 0) and ζ → 0, as (x2 + y2)1/2
→ ∞. (6)

to fix the value of Bernoulli’s constant in the equation (4).
The numerical procedure is an extension to finite depth of the scheme used by Forbes

(1989) and by Părău and Vanden-Broeck (2002) for pure gravity waves, and by Părău et
al (2004) for the computation of the fully localised gravity-capillary waves in deep water.
It is based on a boundary integral equation method introduced by Forbes (1989) for three
dimensional gravity free surface flows due to moving pressure distributions.

The formulation involves applying Green’s second identity to the functions Γ = Φ− x
and G the three dimensional free space Green function

G =
1

4π

1

((x − x∗)2 + (y − y∗)2 + (z − z∗)2)1/2
, (7)

for a volume V which consists of a cylinder bounded by the free surface SF (except a
small hemisphere around the point Q(x∗, y∗, z∗)), and its image SF ′ on the other side of
the bottom z = −1/β. In that way, by symmetry, the condition of no flow normal to the
bottom (5) is satisfied.

After projecting the surface integrals onto the Oxy plane, we obtain

1

2
(φ(x∗, y∗) − x∗) =

=
∫ ∫

R2

(φ(x, y) − x)
1

4π

ζ(x, y) − ζ(x∗, y∗) − (x − x∗)ζx(x, y) − (y − y∗)ζy(x, y)

((x − x∗)2 + (y − y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2)3/2
dxdy+

+
∫ ∫

R2

1

4π

ζx(x, y)

((x − x∗)2 + (y − y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2)1/2
dxdy+
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+
∫ ∫

R2

(φ(x, y)−x)
1

4π

ζ(x, y) + ζ(x∗, y∗) + 2/β − (x − x∗)ζx(x, y) − (y − y∗)ζy(x, y)

((x − x∗)2 + (y − y∗)2 + (ζ(x, y) + ζ(x∗, y∗) + 2/β)2)3/2
dxdy+

+
∫ ∫

R2

1

4π

ζx(x, y)

((x − x∗)2 + (y − y∗)2 + (ζ(x, y) + ζ(x∗, y∗) + 2/β)2)1/2
dxdy (8)

where φ(x, y) = Φ(x, y, ζ(x, y)).
The singularities on the integrals may be isolated in one term by addition and sub-

straction of a null quantity, which can be evaluated in closed form (see Forbes (1989) for
details). One different feature of our numerical scheme is that second derivatives now ap-
pear in the curvature term in (4). They are approximated by centred difference formulas.
A new feature is that no radiation condition is needed. Instead the solutions are assumed
to be symmetric about the x and y axes. The discretization involves truncation and a
regular grid with N points in the x direction and M in the y direction. The algebraic
equations obtained after discretization are solved by Newton’s method.

The numerical algorithm can be extended to calculate waves which propagate along
the interface between two superposed fluid layers of finite or infinite thickness.

3 Results

For small surface tension (β < 1/3) we found that the three dimensional problem is qual-
itatively similar to the two dimensional problem. In particular there are two branches of
fully localised central depression, or central elevation, three dimensional gravity capillary
solitary waves. These waves have decaying oscillations in the direction of propagation and
are monotonically decaying perpendicular to the direction of propagation (see Fig.1(a)).
The curves obtained by cutting the free surface with planes parallel to the direction of
propagation are qualitatively similar to the two dimensional profiles obtained by Vanden-
Broeck and Dias (1992) and by Dias et al. (1996). The solutions are quite similar to the
fully localised solitary waves found on deep water (see Parau et al. 2004).

For strong surface tension (β > 1/3) we found only fully localised depression gravity
capillary solitary waves. They are similar to fully localised solitary-wave solutions of the
KP-I equation as shown in Fig. 1(b). The amplitude of the solutions is also close to that
predicted by KP-I for β bigger than 1/3 and λ close to 1. We can follow continuously a
branch of central depression solitary-wave solutions from strong to weak surface tension,
by passing through β = 1/3, as predicted by Milewski (2005). There is a maximum
amplitude for the branch of central depression waves (with λ constant) for β near 1/3.

Acknowledgments

This work was supported by EPSRC, under Grant Number GR/S47786/01.

References

[1] F. Dias, D. Menasce and J.-M. Vanden-Broeck “Numerical study of capillary-gravity
solitary waves” Eur. J. Mech., B/Fluids 15, 17 (1996).

3



−40 −30 −20 −10 0 10 20 30 40

0

10

20

30

40

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x 

y 

z 

(a) 

−40 −30 −20 −10 0 10 20 30 40

0

10

20

30

40

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

x 

z 

y 

(b) 

numerical KP−I 

Figure 1: (a) Solitary gravity-capillary wave for β = 0.25, λ = 1.13.
(b) Solitary gravity-capillary wave for β = 1.2, λ = 1.13 (x ≤ 0) compared with the fully
localised solitary wave solution for KP-I (x ≥ 0), as given by Milewski (2005). Only half
of the solutions (y ≥ 0) are shown.
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