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SUMMARY
It has been known for about ten years that, within the framework of the linearised water-wave problem, certain fixed
structures can support fluid oscillations of finite energy known as “trapped modes”. In this work the open question of the
existence of trapped modes for a freely-floating structure without moorings is considered. For the case of a structure able
to move in heave, the conditions necessary for the existence of such a trapped mode are discussed.

1 INTRODUCTION
It is known that, within the linearised theory of water
waves, certain structures when held fixed can support a
trapped mode of a particular frequency [1]. Such a mode
is a free oscillation of the fluid that has finite energy, does
not radiate waves to infinity, and in the absence of viscos-
ity will persist for all time. If, for a specified frequency of
fluid oscillation, the structure does notsupport a trapped
mode, then the solutions to the frequency-domain radia-
tion and scattering problems at that frequency are unique.
From the practical point of view, the existence of a trapped
mode means that it is difficult to find numerical solutions
to the radiation and scattering problems for a range of fre-
quencies around the trapped-mode frequency [2].

Trapped modes are orthogonal to any incident wave [3]
and consequently will not be excited in a scattering prob-
lem in either the time or frequency domains. However, the
existence of a trapped mode implies that at the trapped-
mode frequency there is a pole in a frequency-domain ra-
diation potential [2] and the solution to the corresponding
radiation problem does not exist at that frequency [3]. A
consequence of this is that trapped modes can be excited
in the time domain by the forced oscillations of a trapping
structure [4].

Recently, it has been established that the trapped modes
supported by a fixed structure, as described above, cannot
be excited when that structure is allowed to float freely,
with or without incident waves [5, 6]. For motion in a sin-
gle mode this follows immediately from the equation of
motion which shows that the pole in the radiation poten-
tial at the trapped-mode frequency is annulled by a corre-
sponding zero in the velocity [5]. However, it is also true
that trapped modes supported by fixed structures cannot
be excited by motions of the structure in more than one
mode [6]. Thus, although the existence of such trapped
modes leads to difficulties in the solution of the frequency-
domain radiation and scattering problems [2], their exis-
tence has no direct relevance to the problem of a freely-

floating body in which the radiation and scattering prob-
lems are combined through the equation of motion.

The question therefore arises “Are there trapped modes
in the water-wave problem for a freely-floating structure?”
(such a mode would correspond to a coupled free oscilla-
tion of both the structure and the surrounding fluid). The
present work seeks to answer this question, although, as
yet, it has not been possible to arrive at a definitive answer.

2 FREQUENCY-DOMAIN PROBLEM
For simplicity attention will be restricted to vertical
(heave) motions of a structure that may have a single el-
ement, or be made up of a number of separate elements
that are constrained to move together. It will be assumed
initially that the structure is moored and that the moorings
have both spring and damper characteristics, although the
main interest here is in finding a trapping structure that
is not moored. A solution of the governing equations is
sought that corresponds to a coupled motion of the fluid
and structure about their equilibrium states. The motion
should be time harmonic with a particular angular fre-
quencyω and have finite energy.

For time-harmonic motion any time-dependent quantity
F(t) may be written

F(t) = Re
{
F e−iωt

}
(1)

whereF is, in general, complex. In the absence of any
forcing, the equation of motion of the structure in the fre-
quency domain can then be written[

ρgW + k − ω2(M + a+ i(b+ γ)/ω)
]
v = 0. (2)

Hereρ is the fluid density,g is the acceleration due to grav-
ity, W is the water plane area,k is the spring constant
of the moorings,M is the mass of the structure (which
by Archimedes principle isρ times the submerged vol-
umeV ), a is the added mass coefficient,b is the damp-
ing coefficient,γ is the damping constant of the moorings,



andv is the (complex) amplitude of the structural velocity.
It follows from (2) that necessary conditions for the exis-
tence of a non-zerov (so that the structure is in motion)
are that

ρgW + k − ω2(M + a) = 0 (3)

and
b+ γ = 0. (4)

For the fluid motion to have finite energy there can be
no radiation of waves to infinity and hence, at the fre-
quencyω, it is required that the damping coefficientb is
zero (botha andb are, in general, functions of frequency).
It then follows from (4) that the mooring characteristicγ
must also be zero. The resonance condition (3) can be sat-
isfied quite easily by an appropriate choice of the spring
constantk. Thus, provided a structure can be found such
that the damping is zero at the frequencyω, trapped modes
for a floating structure moored by springs are readily con-
structed.

However, the main interest here is in structures with-
out moorings. In which case the construction of a freely-
floating trapping structure requires bothb = 0 and

ρgW − ω2(M + a) = 0 (5)

at a particular frequencyω.

3 JOHN’S UNIQUENESS PROOF
Over the last fifty years of so considerable attention has
been paid to the question of the uniqueness of the solu-
tions to the radiation and scattering problems (uniqueness
at a particular frequency is equivalent to the absence of
trapped modes). Quite remarkably, given that it is prob-
ably the problem of greatest interest, there appears to be
only one published result on uniqueness in the problem
for a freely-floating structure and that is in the seminal pa-
per by John [7] (although the ideas used in the proof have
recently been applied to a structure supported by an air
cushion [8]). John’s proof is for a structure able to move
in all modes of motion, but an outline is given here only
for the case of heave motion.

Assume that a trapped mode exists for a freely-floating
structure without moorings. John shows that, provided that
the structure satisfies the “John condition” (that no line
drawn vertically downwards from the free surface inter-
sects the structure) the time-domain velocity potentialΦ
of the trapped mode satisfies∫ 2π/ω

0

dt
∫∫

Γ

∂Φ
∂t

∂2Φ
∂n∂t

dS > 0, (6)

whereΓ is the wetted surface of the structure and the co-
ordinaten is normal toΓ and directed out of the fluid.
When interpreted in terms of frequency-domain motion in
a single mode this condition is equivalent toa > 0 at the
trapped mode frequency, and hence it follows from the res-
onance condition (5) that if a trapped mode exists then

ρgW − ω2M > 0. (7)

Whenω is sufficiently large this inequality is violated and
a contradiction is obtained. Thus, for a structure that satis-
fies the John condition,ω2 > ρgW/M ensures that there
are no trapped modes and hence there is a unique solution
to the freely-floating structure problem.

4 WAVE-FREE STRUCTURES
As noted in§ 2, a necessary condition for the existence
of a trapped mode at a frequencyω is that the damping
coefficient must be zero at that frequency. In other words
when the structure is forced to oscillate with frequencyω
there can be no waves radiated to infinity. A method for
the construction of such structures is given by Kyozuka
and Yoshida [9].

The idea is as follows. Letφ0 be the potential of a sin-
gular solution of the governing equations (excluding the
boundary condition on the, as yet, unknown structural sur-
faceΓ) that does not radiate waves to infinity at a specified
frequencyω. If φ0 is to be the solution to the heave prob-
lem then it is required that

∂φ0

∂n
= nz on Γ, (8)

wherenz is the component of the inward normal toΓ in
the verticalz direction, or equivalently

∂φ

∂n
= 0 on Γ, (9)

whereφ = z − φ0 and the result∂z/∂n = nz has been
used. A suitable surfaceΓ, such that the correct boundary
condition onΓ is satisfied, is determined by examining the
streamlines of the flow corresponding toφ.

Kyozuka and Yoshida use a combination of a sub-
merged source and a vertical dipole to obtain a wave-free
singular solution. To illustrate the idea here a simpler
wave-free potential is used and attention is restricted to
two dimensions and water of infinite depth. Choose Carte-
sian coordinatesx, z with z measured vertically upwards
from the undisturbed free surface, and polar coordinates
r, θ that haver measured from the origin andθ measured
anticlockwise from the downwards vertical. The potential

φ0 = α

{
cos 2θ
r2

+
K cos θ

r

}
, (10)

whereα is a constant andK = ω2/g, satisfies all of the
required conditions and in particular is wave free for all
frequencies.

A streamline pattern corresponding toφ = z − φ0,
whereφ0 is given by (10), is shown in figure 1 for par-
ticular values ofα andK (the pattern is symmetric about
x = 0). A wave-free structure is obtained from any
streamline that isolates the singularity from infinity and
that has finite length inz < 0. In figure 1 there is only
one such streamline; it is the dividing streamline that joins
the stagnation point atx = 0, z ≈ −0.76 to the free sur-
face. The structural surface corresponding to this stream-
line curves towards the origin near the free surface and
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Figure 1: Streamlines corresponding toφ = z − φ0; φ0 is
given by (10) withα = 1/2π andK = 1. The dashed line
is the free surface.

thus violates the John condition mentioned in§ 3 (and
hence John’s theorem does not apply to this structure).

The streamline pattern varies withα andK. Thus, a
structure obtained by this method will be wave free only
at the chosen value ofK. This is illustrated in figure 2
where the damping coefficientb for the structure corre-
sponding to the dividing streamline in figure 1 (together
with its reflection inx = 0) is plotted as a function ofK.
The damping coefficient is zero only atK = 1.

5 THE RESONANCE CONDITION
In § 4 it has been shown that it is possible for a structure to
oscillate and not to radiate waves so that the damping coef-
ficient is zero at a particular frequency. To obtain a trapped
mode it remains to establish whether or not it is possible to
satisfy simultaneously the resonance condition (5). Some
progress can be made through an application of Green’s
theorem as follows.

Let S denotes the union of the wetted surface of the
structureΓ, the free surfaceF , and a closing semicircle
S∞ at infinity in z < 0. Apply Green’s theorem overS to
a wave-free potentialφ0 and

u = z + 1/K (11)

which satisfies both Laplace’s equation and the linearised
free surface condition. It is known that

φ0 ∼
µ cos θ
r

as r →∞, (12)

whereµ is a constant, so that to leading orderφ0 is dipole-
like at infinity; it is possible thatµ may be zero.
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Figure 2: The damping coefficientν = b/(ρω) v. the fre-
quency parameterK for a structure formed from the di-
viding streamline in figure 1.

Green’s theorem gives∫
S

[
φ0
∂u

∂n
− u

∂φ0

∂n

]
ds = 0. (13)

The contribution to the integral fromF is zero, as both
φ0 andu satisfy the free-surface condition, and it follows
from the asymptotic form (12) that∫

S∞

[
φ0
∂u

∂n
− u

∂φ0

∂n

]
ds = −πµ. (14)

From the boundary condition (8),∫
Γ

[
φ0
∂u

∂n
− u

∂φ0

∂n

]
ds

=
∫

Γ

[
φ0nz −

(
z +

1
K

)
nz

]
ds. (15)

Now, becauseb = 0, the definition of the added mass gives∫
Γ

φ0nz ds =
a

ρ
(16)

and, by an application of Stokes’ theorem over the sub-
merged volumeV (= M/ρ) of the structure,∫

Γ

znz ds =
∫

Γ

z dx = −V. (17)

The divergence theorem may be used to show that for an
arbitraryψ∫

Γ+W

ψnz ds = −
∫∫

V

∇ψ · ez dV, (18)

whereez is a unit vector in thez direction and the normal
coordinaten is directed intoV . In particular, withψ ≡ 1,
this result yields∫

Γ

nz ds = −
∫

W

nz ds =
∫

W

dx = W. (19)

Thus, the application of Green’s theorem gives

ρgW − ω2(M + a) = −πµρω2 (20)

and it is now apparent that the resonance condition (5) can-
not be satisfied unless the dipole coefficientµ is zero.
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Figure 3: Streamlines corresponding toφ = z − φ0; φ0 is
given by (21) withα = 1/2π andK = 1. The dashed line
is the free surface.

6 DISCUSSION
It has been shown here that, for a specified frequency of
oscillation ω, a trapped mode can exist in the problem
of a freely-floating structure without moorings provided
that the damping coefficient is zero, and that the resonance
condition (5) is satisfied. Both of these requirements are
in terms of quantities that are readily calculated from the
standard radiation problem in which the structure is forced
to perform time-harmonic oscillations.

It is straightforward to find structures that have zero
damping at a particular frequency by using wave-free po-
tentials and an example of such a structure is given in§ 4.
However, the result (20) obtained in§ 5 shows that (5) is
equivalent to the requirement that the dipole coefficient in
the far-field expansion of the radiation potential is zero.
In the example of a wave-free structure given here, and in
all of those given by Kyozuka and Yoshida [9], the dipole
coefficient is not zero.

Singular wave-free potentials with higher-order singu-
larities than a dipole (and hence withµ = 0) are readily
obtained. For example, excluding any with a dipole com-
ponent, the least singular wave-free potential with a singu-
larity in the free surface is

φ0 = α

{
cos 4θ
r4

+
K cos 3θ

3r3

}
, (21)

and a streamline pattern for the correspondingφ is shown
in figure 3. There is still a dividing streamline emanating
from a stagnation point, but this now enters the singular-
ity without crossing the free surface and hence does not
isolate the singularity from infinity and can not be used
to define the surface of a structure. After experimentation
with various singularities, and combinations of singulari-
ties, it is difficult to see how it is possible to obtain a heav-
ing structure from anything other than a flow that has a
dipole-like singularity.

One way to obtain a wave-free structure for which the
radiation problem has a flow with a zero dipole coefficient
in the far field is by considering two heaving structures
that oscillate with opposite phase. However, consideration
of the equations of motion shows that the resonance con-
ditions are then modified from those given here for a pure
heave oscillation, and again it is difficult to see how they
can be satisfied.

Thus, at the time of writing, the author has not been able
to establish the existence of trapped modes in the problem
of a freely-floating structure. The work is ongoing.
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