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Introduction

The numerical simulation of natural unsteady flow always
faces the question of whether the solution has satisfied con-
vergence. The common criteria in numerical simulations
normally refers to spatial or grid convergence. This is sat-
isfactorily shown by comparing solutions on different grid
densities. Once two solutions agree, the grid is accepted as
’dense enough’.

In unsteady flow, the next step is to satisfy temporal
convergence. The first step would be to compare solutions
on a given grid in a statistical sense. Initially, the mean
and variance (RMS), and then higher order moments of
the probability distribution of the solution could be used
as metrics of convergence. In this paper, we will discuss
convergence in space and time using a time-accurate Navier
Stokes solver. The convergence of the numerical solver will
be compared to experiments using the problem of a back-
ward facing step with a free surface. This choice of phys-
ical problem exhibits unique behaviors such as having a
wavlength of half the linear wavelength, and periodic vor-
tex shedding synonomous to a circular cylinder.

Experiment

The experiments where conducted in the low turbulence
free-surface recirculating water channel at the University
of Michigan. This channel has a test section of 2m x 1m x
0.5m (l x w x h). Using a contraction of 4:1, the maximum
speed in the test section is 2 m/s.

The model is a step that spans the width of the chan-
nel. The step height is defined from the bottom edge of
the step to the free surface elevation at zero speed, and is
controlled by adjusting the volume of water in the channel.

In analogy with transom stern flow, the non-dimesional
parameter describing the free surface behavior is the tran-
som draft Froude number (Ft), which is the Froude number
calculated with step height, and inflow speed. The range
of interest is the pre-ventilation speeds of 1.0 < Ft < 2.0.
In this abstract all results shown are for Ft = 1.66.

The experimental data set is a collection of free surface
elevation time series, collected at different downstream lo-
cations. Three methods of measuring the free surface are
used: a sonic wave probe; a wire-capacitance probe; and
a laser induced fluorescense system. The sonic probe has
a ’footprint’ which effectively averages over an area on the
free surface (≈ 3 in. dia.). The wire probe was chosen
because it is flexible enough to not have any air entrain-
ment on the downstream side, but with this flexibility, its

accuracy suffers, and it has its own dynamics. Finally,
the optical method should yield the superior results, but
presently is a work in progress. Results from the optical
measurements will be presented at the workshop.

Numerical Scheme

The numerical simulations use a two-dimensional solver au-
thored by Alessandro Iafrati [1], where the Navier-Stokes
equations are solved for two fluids using a Level Set ap-
proach to capture the interface. The procedure solves the
conservation of mass and momentum equations in a gener-
alized coordinate system. The governing equations appear
as follows,
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Where xi and ui are cartesian coordinates and velocities
respectively. The transformation to a generalized coordi-
nate ξm allows for solutions on more sophisticated grids
and gives rise to the area flux, Um, which is the area flux
in the ξm direction. The area of the cell, J−1, and metric
tensor Gmn are also products of the coordinate transfor-
mation.

The equations are solved using a fractional step ap-
proach. The convective term is advanced with a 3rd order
Runge-Kutta method, and the diffusive term is integrated
using the stable 2nd order Crank-Nicholson method. The
pressure term yields the pressure Poisson equation solved
with a multigrid method. The code allows for many possi-
bilities for approximating the spatial derivatives, in these
simulations the error is at worst second order.

Results

The non-dimesional units presented in the results use the
transom draft T , uniform inflow velocity U , and gravity g,
such that;

t∗ =
tU

T
, f∗ =

fT

U
, x∗ =

xg

2πU2
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Figure 1: Mean and variance for three different grids, Ft = 1.66.

The frequency f∗ represents a Strouhal number, and
the x∗ is the downstream length x divided by the wave-
length predicted from the deep water dispersion relation
using g and U .

In validation, a suitable metric must be chosen to eval-
uate the ’quality’ of the solution. For this model problem,
the mean and variance of the free surface are used. The
mean of the free surface η̄ and variance σ are nondimen-
sionalized with transom draft. To calculate η̄ and σ for the
simulations, the free surface elevation is stored at prede-
termined time intervals. The length of time record for the
course and medium grids is t∗ = 436.8, and at the time of
writing the length of record for the fine grid is t∗ = 109.2.
Then at discrete downstream locations the time average
and variance are computed.

To show the quality of spatial convergence, figure (1)
shows the mean and variance for the three different grids
used in the simulation, namely 64 x 96, 128 x 192, and 256
x 384 cells. The variance increases with the finer meshes,
meaning that there is unsteadiness present at smaller scales
that the course mesh does not capture.

Figure (1) reveals a very unique feature of this unsteady
viscous flow. Linear inviscid wave theory predicts a steady
non-dimensional wavelength of x∗ = 1.0. As seen in figure
(1), the steady wavelength is closer to x∗ = 0.5. The rea-
sons for the shorter wavelength are not obvious. Vanden-
Broeck [2] and Scorpio and Beck [3] discuss the attenuation
of the linear wavelength due to non-linear effects for tran-
som stern potential flow. Their results show changes that
are less than 8%.

To examine the time convergence, discrete time series of
the free surface elevation where created. The domain was
allowed to fully develop, by waiting until t∗ = 54.6, which
is the time for two ’flow-through’ periods between the end
of the body, and the begining of the beach. Then the free
surface was sampled at a rate of ∆t∗ = .546. The mean
and variance where computed using four different length

of time series, t∗ = 109.2, 218.4, 324.6, 436.8. Figure (2)
demonstrates the time convergence of the simultions.

Finally, the Fourier Transform is used to compare the
data in the frequency domain. Figure (3) shows the mag-
nitude of the Fourier coefficients at four downstream lo-
cations as compared to experiments, for Ft = 1.66. The
magnitude is non-dimensionalized with respect to transom
draft, and plotted versus non-dimensional frequency f ∗. In
column A, the numerical results for the medium grid are
shown. The figures in column B show the Fourier coef-
ficients for experiments with T = 7.4 cm. The figures in
column C are from experiments with T = 4.5 cm. The four
downstream locations are x∗ = 0.25, 0.5, 0.75, 1.0.

Columns A, B, and C all show a peak at f∗ = St ≈ 0.2,
which is approximately the value for vortex shedding from
behind a cylinder. The vortex street that is familiar to
the circular cylinder has also been visualized in these ex-
periments, and images will be availible for the workshop.
Also, in the two experiments and the simulations the peak
decays similarly over the range x∗ < 1.0.

Columns B, and C while at the same Ft, are at two
different Re (14,000 and 29,000), demonstrating that over
this small range the unsteadiness is Re independent.
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Figure 2: Statistics calculated with four different lengths of time series, t∗ = 109.2, 218.4, 324.6,
436.8, and for the three different grids. Ft = 1.66.



A - Numerical B - Experiment T = 7.4 cm C - Experiment T = 4.5 cm
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Figure 3: Magnitude of the Fourier coefficient (non-dimensionalized with T ) for Ft = 1.66 at four different downstream
locations, x∗ = 0.25, 0.5, 0.75, 1.0. Column A: Simulation, medium grid, column B: Experiment using capacitance probe
and T = 7.4 cm, column C: Experiment using wire capacitance probe and T = 4.5 cm.




