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SUMMARY

A new model of water impact is introduced and applied to two-dimensional problem of asymmetric body
entering water vertically. The model is based on Wagner theory of impact and the flat-disc approximation but
approximately accounts for both the body shape and the nonlinear terms in the Bernoulli equation for the
hydrodynamic pressure. The model which is referred to as Modified Logvinovich Model (MLM), was originally
designed to evaluate the hydrodynamic loads acting on a symmetric ship sections during ship slamming. In
the case of roll motion of the ship or oblique waves the entry problem becomes asymmetric, which affects the
hydrodynamic loads. General formula for the vertical component of the nonlinear hydrodynamic force is derived.
Analytical calculations have been performed for an inclined wedge entering water vertically. Simple formula for
evaluation of maximal acceleration magnitude of the inclined wedge dropped onto the liquid free surface has
been derived and compared with experimental data. It is shown that the new model much better predicts the
maximal acceleration of a free-dropped wedge than Wagner theory.

1. INTRODUCTION

Plane unsteady problem of asymmetric body enter-
ing water vertically is considered with special atten-
tion given to the vertical component of the hydrody-
namic force acting on the body. Accurate prediction
of the force is important in analysis of global elastic
response of a ship in the case of slamming. If a body
is thin and enters water almost vertically, one expects
small values of the hydrodynamic force, which can be
obtained by using linear theory without account for
free surface deformations. Such a force is still im-
portant once the entering body trajectory should be
determined. If a body is blunt with small deadrise
angle in the impact area, the hydrodynamic force is
very large at initial stage of the impact and may be
responsible for elastic vibration of the body. Ampli-
tude of the hydrodynamic force acting on a blunt body
is strongly dependent on the ”piled-up” effect, this is
an additional increase of the impact area due to de-
formation of the liquid free surface. It is well known
that Wagner theory of water impact correctly describes
this effect and can be used for estimation of hydro-
dynamic loads on blunt bodies entering liquid. It is
also known that this theory overpredicts the loads for
bodies with moderate deadrise angles. Several models
were developed in the past to improve the loads pre-
dictions. These models generalize the Wagner ideas
in different way taking into account real shape of the
body (Generalized Wagner Approach), nonlinear terms
in the free surface boundary conditions (Vorus Model),
fine structure of the flow close to the spray jet region
(Matched Asymptotic Approach) and some global cor-
rections of the Wagner solution by adding extra terms
(Original Logvinovich Model). It is important to note
that all models employed nonlinear Bernoulli equation
for the hydrodynamic pressure in contrast to the Wag-
ner model, which is based on linearized Bernoulli equa-
tion. It was demonstrated that the models essentially
improve the classical Wagner approach with respect

to prediction of the hydrodynamic force on entering
bodies both in two-dimensional and three-dimensional
cases. The Original Logvinovich Model is the simplest
in this group. In some cases this model provides useful
formulae for the loads without numerical analysis of
boundary-value problems.

Recently the Original Logvinovich Model was ana-
lyzed with the help of asymptotic methods [1] and gen-
eralized with the aim to account for three-dimensional
effects, elasticity of the body and its asymmetry. The
new model of water impact is referred to as Modi-
fied Logvinovich Model (MLM). The model is based
on Wagner theory of impact and the flat-disc approxi-
mation but approximately accounts for both the body
shape and the nonlinear terms in the Bernoulli equa-
tion for the hydrodynamic pressure. In two-dimensional
symmetric case the MLM was tested against both nu-
merical (for wedge) and experimental (for circular cylin-
der) results. A fairly good agreement was reported.

In this paper the MLM is generalized to asymmetric
problem and applied to shapes of ship sections, which
are not blunt. It is shown that the MLM essentially
improve prediction of the hydrodynamic loads. The
obtained results are compared with the experimental
results by Xu [2] for inclined wedge entering water ver-
tically. It is shown that asymmetry gives an important
contribution to the hydrodynamic force. Approximate
approach based on a combination of symmetric solu-
tions within MLM was tested. It is shown that this
approach can be used for estimation of the loads only
for small inclination angles.

2. FORMULATION OF THE PROBLEM

In this section general formulae for the two-dimensional
pressure distribution along the wetted part of a blunt
body entering liquid vertically and the hydrodynamic
force acting on the body are derived. The liquid is
assumed ideal and incompressible. The body is asym-
metric and blunt. The liquid flow is assumed plane and



potential. The liquid region is of infinite depth. Ini-
tially the liquid is at rest, its free surface is horizontal
(y = 0) and the body touches the free surface at a sin-
gle point (x = 0) taken as the origin of the Cartesian
coordinate system Oxy (see Figure 1). The position of
the body is described by the equation y = f(x)− h(t),
where h(t) is the prescribed penetration depth and the
function f(x) describes the body shape, f(0) = 0. The
velocity potential ϕ(x, y, t) of the flow originated by
the entering contour satisfies the Laplace equation in
the flow domain, the kinematic and dynamic bound-
ary conditions on the liquid free surface and the body
boundary condition on the entering contour. Gravity
effects and surface tension are neglected in the present
analysis.

Figure 1: Initial position of wedge and free surface

To evaluate the pressure distribution P (x, t) along
the wetted part D(t) of the blunt body during the
initial stage, we assume that both the velocity po-
tential φ(x, t) in the contact region, where φ(x, t) =
ϕ(x, f(x) − h(t), t), and the dimension of this region
are known. The hydrodynamic pressure p(x, y, t) in
the flow domain is given by the Cauchy-Lagrange inte-
gral

p(x, y, t) = −ρ

(
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)
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where ρ is the liquid density. By using the definition

P (x, t) = p(x, f(x) − h(t), t) (2)

and the boundary condition on the body surface

ϕy = ϕxf ′(x) − ḣ(t), (3)

we obtain
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Dot stands for the time derivative. The hydrodynamic
force F (t) acting on the entering contour is given as

F (t) =

∫

D(t)

P (x, t)dx. (5)

Equations (4) and (5) are exact within the potential
flow theory. The equations require the function φ(x, t),
which can be numerically evaluated at each time step.

It is suggested to obtain approximately the distribution
φ(x, t) and to derive approximate formulae for both the
pressure P (x, t) and the force F (t) suitable for practical
use.

3. MODIFIED LOGVINOVICH MODEL

The present approximation is based on the Taylor ex-
pansion

φ(x, t) ≈ ϕ(w)(x, 0, t) − ḣ(t)[f(x) − h(t)], (6)

where ϕ(w)(x, y, t) is the solution of the classical Wag-
ner problem

∆ϕ(w) = 0 (y < 0), (7)

ϕ(w) = 0 (y = 0, x > a(t) and x < −b(t)), (8)

ϕ(w)
y = −ḣ(t) (y = 0,−b(t) < x < a(t)), (9)

ϕ(w) → 0 (x2 + y2 → ∞). (10)

Within the Wagner approach the contact region D(t)
between asymmetric contour and liquid corresponds to
the interval −b(t) < x < a(t), y = 0, where the func-
tions b(t) and a(t) should be determined with the help
of the so called Wagner condition. In asymmetric case
the Wagner condition, which is the condition that the
elevation of the free surface is bounded, can be written
as system of two transcendental equations

∫ 1
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dτ = 0, (11)

∫ 1
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dτ = 0, (12)

G(τ) = f [x(τ)] − h(t), x(τ) = A(t)τ + B(t),

A(t) =
1

2
(a + b), B(t) =

1

2
(a − b),

where A(t) is the half-width of the contact region and
B(t) characterizes the region asymmetry.

In the problem of inclined wedge entry we introduce
the deadrise angle of the wedge γ, the inclination angle
σ, actual deadrise angle γR on the right-hand side of
the body and actual deadrise angle γL on the left-hand
side of the body, where γR = γ − σ and γL = γ + σ
(see Figure 1). At the initial stage, when the wedge is
only partly wetted, equations (11) and (12) provide

a(t) = a0h(t), b(t) = b0h(t), (13)

a0 =
π

2 tan γR

1 − ε

(1 − µ)
√

1 − µ2
, b0 = a0

1 − µ

1 + µ
,

where ε = sin(2σ)/ sin(2γ) and µ(ε) is the solution of
the equation

µ
√

1 − µ2 + arcsinµ = πε/2.

The latter equation is identical to that derived by Toyama
[3] for asymmetric wedge.



In the case of arbitrary shape of the body equations
(11) and (12) are solved numerically with respect to the
functions A(t) and B(t).

The solution of the boundary-value problem (7) -
(10) provides the velocity potential in the contact re-
gion, −b(t) < x < a(t), as

ϕ(w)(x, 0, t) = −ḣ(t)
√

(a − x)(b + x). (14)

By substituting (14) into (6) and (4), we obtain the
pressure distribution in the contact region
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ρḣ2 (a − b − 2x)2

(a − x)(b + x)(1 + f2
x)

− 1

2
ρḣ2+
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Equation (15) predicts negative pressures close to the
contact points x = a(t) and x = −b(t). It is suggested
to consider the pressure only in a part of the contact
region, where the pressure is positive. This is a com-
mon point in almost any approximate models of water
impact.

We introduce two positive functions ã(t) and b̃(t)
as solutions of the equations

P [ã(t), t] = 0, P [−b̃(t), t] = 0.

These equations are solved numerically by bisection
method. Once the equations have been solved, we in-
troduce quantities

µa = ã/a, µb = b̃/a, ba = b/a,
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1

2
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ba − µb
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.

The vertical component of the hydrodynamic force F (t)
is given within the MLM by the formula

F (t) =

∫ ã(t)

−b̃(t)

P (x, t)dx. (16)

The integral in (16) is calculated analytically for first,
second, fourth and seventh terms in (15) and by panel
method for other terms.

In the case of wedge the force is calculated analyt-
ically and presented in the form

F (t) = ρḣ2hFv(γ, σ) + ρḧh2Fw(γ, σ), (17)
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2
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The expression for Fv is more complicated and is not
reproduced here.

Equation (17) can be used to find the body acceler-
ation after the impact in drop tests. By using the sec-
ond Newton law and (17), we can integrate the body
dynamic equation and find the acceleration of the en-
tering wedge as

ḧ = −2mkV0
h

(1 + mh2)2k+1
, (18)

where

m =
ρFw

M
, k =

Fv

2Fw

, V0 =
√

2gHd,

M is the mass of the entering body per unit length,
Hd is the drop height and g is the gravity acceleration.
Note that in Wagner theory the body acceleration is
given by the same formula with k = 1. The maximum
of the acceleration is obtained as

1

g
max |ḧ| = 4

√

ρH2
dFw

M
× L(k) (19)
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[4k + 1
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]2k+1

.

Within Wagner approach the functions a(t) and b(t)
are given by formulae (13), decomposition (17) is still
valid but now

Fw(γ, σ) =
1

8
πa2

0(1 + ba)2, Fv(γ, σ) = 2Fw(γ, σ).

There is another approximate method to evaluate
the force for inclined contour. In this method one con-
siders an inclined contour as intersection of two sym-
metric contours and takes the average value of the
forces calculated for each symmetric contour. In the
case of the inclined wedge the corresponding formula
is

Fapprox(t, γ, σ) =
1

2
[F (t, γR, 0) + F (t, γL, 0)]. (20)

A similar idea was used in the past for analysis of in-
clined cone entry.

4. NUMERICAL RESULTS

The presented model was used to study the effect of
inclination angle on the vertical component of the hy-
drodynamic force in the problem of wedge entry. The
entry velocity was constant in calculations. This im-
plies that only the first term in (17) matters. The
coefficient Fv as function of the inclination angle σ for
γ = 20o is shown in Figure 2 by solid line together
with the corresponding coefficients from the Wagner
approach (dashed line) and from the approximate for-
mula (20)(dotted line).

Analysis demonstrates that the relative difference
between the MLM predictions and those by Wagner
approach always vanish with increase of the inclination
angle. The maxima of the difference occur at σ = 0
(9% for γ = 5o, 27% for γ = 20o, 35% for γ = 30o and



42% for γ = 40o). For σ = γ−1o the relative difference
is about 4% for any deadrise angle.

In contrast, the relative difference between the MLM
predictions and those by approximate formula (20) al-
ways grow with increase of the inclination angle. The
difference is less than 5% if σ < 0.1γ + 1o within the
interval 5o < γ < 45o.
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Figure 2: The coefficient Fv as function of the in-
clination angle σ for wedge with deadrise angle of 20
degrees.

Predictions of maximal acceleration of inclined wedge
by formula (19) were compared with the experimental
results by Xu [2]. In experiments the wedge with di-
mensions 2ft× 8ft, deadrise angle of 20o and different
mass was dropped from different heights at zero incli-
nation angle and at the angle of 5 degrees. Experimen-
tal results and theoretical predictions of the maximal
acceleration of the wedge are summarized in Table 1
for σ = 5o and in Table 2 for symmetric impact with
σ = 0o. It is seen that the theoretical results by MLM
rather accurately correspond to the experimental data.

Mass Drop MLM Experiment Wagner
height by Xu [2] theory

274 lb 0.61 m 13.44 13.0 16.1
274 lb 1.22 m 26.88 27.0 32.18
646 lb 0.61 m 8.75 8.0 10.48

Table 1: Maximal acceleration of the wedge
entering water with inclination angle of 5o.

Mass Drop MLM Experiment Wagner
height by Xu [2] theory

269 lb 0.61 m 12.6 12.0 15.27
269 lb 1.22 m 25.21 24.0 30.54
269 lb 1.83 m 37.82 34.0 45.81
641 lb 0.61 m 8.16 8.0 9.9
641 lb 1.22 m 16.33 16.0 19.78
641 lb 1.83 m 24.5 23.0 29.67
1007 lb 0.61 m 6.51 6.0 7.89
1007 lb 1.22 m 13.03 13.0 15.78
1007 lb 1.83 m 19.55 18.0 23.67

Table 2: Maximal acceleration of the wedge
entering water with zero inclination angle.

5. MLM FOR SHIP SECTIONS

To demonstrate the practical importance of the MLM
method, the comparisons of the results obtained using
the Modified Logvinovich Model with those obtained
using the Generalized Wagner Model are presented for
general ship sections. The ship lines are shown in Fig-
ure 3 (chosen section is indicated with bullets) together
with the time history of the vertical force during the
water entry of this section at vertical velocity of 8m/s.
The force obtained by using the MLM is shown with
dotted line.
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Figure 3: Ship lines with distinguished section and
the vertical force acting on this section.

One can observe very good agreement between the hy-
drodynamic force time evolutions. Taking into account
the enormous difference in the CPU time between two
methods, one can easily understand the practical im-
portance of the MLM method.

6. CONCLUDING REMARKS

It was demonstrated that the MLM can be used
to evaluate the vertical hydrodynamic force acting on
asymmetric bodies such as ship sections in oblique sea
and/or in roll motion. It was shown that inclination
of a ship section leads to increase of the force and may
be responsible for larger elastic deflections of the ship
hull and larger bending stresses in the ship girder than
in the head sea.
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