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ABSTRACT: The impact of an elastic plate of finite length that is dropped against a liquid free surface is
analyzed. The liquid is assumed ideal and incompressible and its motion two-dimentional, symmetric and
potential. The elastic plate is the bottom of a structure, which penetrates the liquid at a constant velocity.
The plate deflection is governed by the Euler beam equation and the beam edges are assumed connected with
a main structure by a spring. The problem is coupled because the liquid flow, the beam deflection and the
geometry of the contact region between the body and the liquid must be determined simultaneously. The
analysis is based on the normal mode method with hydroelastic behaviour of the plate being of the main
interest. It is shown that, at the beginning of the impact stage, independently of the rigidity of the connecting
springs, the edges of the plate move toward the liquid surface. This fact may lead to a separation of a ship
shell from the basic construction. The constructed algorithm allows one to perform the analysis of elastic
effects during the impact of a liquid with thin-walled plates of limited extent. In addition, free fall motion is
considered within this model as a limiting case for which the junction-spring stiffness approaches zero.

INTRODUCTION

The hull surfaces of ships and other floating structures
are covered by a special ”shell” that absorbs impacts
of surface waves and protects the structural elements
of the vessel. This ”shell” consists of thin elastic
plates (of mild steel or other metal), which are con-
nected along their edges to the main structure. The
forces at the edges of the plate are of a special interest
because hydrodynamics loads are transferred through
these connections, which are the weakest points.

To model the reactions of a ship shell due to water-
wave impacts, the problem of a symmetric wave impact
on an elastic plate with edges connected to the rigid
main structure by linear springs is considered. The
main structure penetrates the water with constant ve-
locity. The liquid flow is two-dimensional, symmetric,
and potential. The cross section of the plate is con-
stant, and its thickness is supposed to be much smaller
than its length. Elastic vibrations of the plate are de-
scribed by Euler’s beam equation.

Figure 1.

The impact stage, during which the beam is only
wetted partially, is considered here. During this stage,
hydrodynamic loads are very large and depend on both
the velocity of expansion of the contact region and
the beam deflection. The analysis of the impact pro-
cess is based on hydroelasticity, in which the coupled
hydrodynamics and structural-dynamics problems are
solved simultaneously. Even after all possible simpli-
fications, the impact-stage problem remains nonlinear,
because the dimension of the contact region is unknown

in advance and must be determined together with the
liquid flow and the beam deflection. The problem is
analyzed within the framework of the Wagner theory,
which takes into account changes of the form of a liq-
uid free surface during an impact. The hydroelastic
reaction of the beam is of main interest. Plate dis-
placements and bending moments arising in the plate
and on its edges are determined. The effects of the
spring stiffness, the beam elasticity, and other impact
parameters (notably, radius of curvature of the wave
and impact velocity) are investigated.

The analysis is based on the normal mode method,
which makes it possible to reduce the problem to an
integration of a system of first-order differential equa-
tions for the principal coordinates of the plate displace-
ment and the dimension of the contact region. A no-
table aspect of the analysis is that all the coefficients
of this system of equations are obtained analytically.

This paper is an extension of [1]–[3]. However, the
fact that the plate edges are allowed to move leads
to the occurrence of new eigenvalues and consequently
new normal modes, which bring essential difficulties in
the analytical calculations of the elements of the added-
mass matrix.

The numerical results demonstrate that the pres-
ence of spring connectors has important effects on bend-
ing stresses and displacements. It is shown that, at the
beginning of the impact stage, independently of the
rigidity of the connecting springs, the edges of the plate
move toward the liquid surface. This fact may lead to a
separation of ship shell from the basic construction. In
the general case, the displacement of the plate grows,
and the bending stresses in the plate decrease, with the
reduction of rigidity of springs.

The free-fall motion of an elastic plate can be con-
sidered as a limiting case, for which the junction spring
stiffness vanishes, of the model considered here.



STATEMENT OF THE PROBLEM

The unsteady plane problem of wave impact upon a
elastic beam is considered. The edges of the beam
are elastically connected to the bottom of the struc-
ture that penetrates the liquid, which is supposed to
be ideal and incompressible. Initially (t′ = 0) a wave
crest touches the beam at its central point. Then the
liquid starts to move up with constant velocity V . The
initial contact point is taken as the origin of a Carte-
sian system of coordinates x′Oy′ (dimensional variables
are identified by a prime). The curve y′ = −(x′)2/2R
corresponds to the liquid free surface at t′ = 0. This
curve describes the shape of the wave crest with radius
of curvature R. The flow caused by the plate impact
is symmetric with respect to the line x′ = 0, Figure 2.

Figure 2.

Non-dimensional variables are used below. The be-
am length L is taken as the reference length and the
impact velocity V as the reference velocity of liquid
particles. L2/(RV ) is taken as the reference time,
L2/R as the reference displacement, and ρV 2(R/L)
as the reference pressure; here, ρ is the liquid density.

The plane potential flow generated by the plate
penetration and the plate behaviour are described by
the velocity potential ϕ(x, y, t) and the beam deflection
w(x, t) which satisfy the following equations

ϕxx + ϕyy = 0 (y < 0), (1)

ϕy = −1 + wt(x, t) (y = 0, |x| < c(t)), (2)

ϕ = 0 (y = 0, |x| > c(t)), (3)

ϕ→ 0 (x2 + y2 → ∞), (4)

p(x, y, t) = −ϕt(x, y, t), (5)

α
∂2w

∂t2
+ β

∂4w

∂x4
= p(x, 0, t) (|x| < 1, t > 0), (6)

w = wt = 0 (|x| < 1, t = 0). (7)

The presence of the elastic connectors is represented
by the conditions

wxx = 0 (x = ±1, t > 0), (8)

wxxx = sign(x)klw (x = ±1, t > 0), (9)

The liquid-flow equation, the boundary and initial
conditions, and the Euler beam equation, which are
written in nondimensional variables, contain three pa-
rameters α = MB/(ρL), β = (EJ)/(ρLR2V 2) and
kl = KlL

3/EJ . Here MB is the beam mass per unit
length, E is the elasticity modulus, J = h3/12 is the
inertia momentum of the beam cross-section, h is a
thickness of the beam, andKl is the stiffness of the elas-
tic connectors. The bending stress distribution σ(x, t)
is given in the dimensionless variables as σ(x, t) =
wxx(x, t), with its scale Eh/(2R).

The boundary-value problem (1) - (9) is considered
under the additional condition (Wagner condition [4])
that the elevation of the free surface is equal to the
vertical position of the deformed plate at the the con-
tact points. In a symmetrical case the positions of the
contact points are described by the single function c(t).
The Wagner condition can be reduced to the equation
suggested by Korobkin [5]. It has the form

∫ π/2

0

yb[c(t) sin θ, t]dθ = 0, (10)

where the function yb(x, t) describes the shape of the
beam with respect to the initial position of the free
surface. In the present case, yb(x, t) = x2/2−t+w(x, t),
and equation (10) gives

t =
1

4
c2 +

2

π

∫ π/2

0

w[c(t) sin θ, t]dθ. (11)

The hydrodynamic part (1) - (5), the structural part
(6) - (9), and the geometrical part (11) of the Wagner
problem are closely connected and have to be treated
simultaneously in general. It should be noticed that, al-
though both the equations of motion and the boundary
conditions are linearized, the problem remains nonlin-
ear because c(t) is unknown.

The Wagner problem (1) - (9), (11) is solved with
the help of the normal mode method.

NORMAL MODE METHOD

Within this approach, the beam deflection w(x, t) is
sought in the form

w(x, t) =

∞
∑

n=1

an(t)ψn(x), (12)

where the eigenfunctions ψn(x) are the solution of the
following problem

d4ψn

dx4
= λ4

nψn (−1 < x < 1);

d2ψn

dx2
= 0,

d3ψn

dx3
= sign(x)klψn (x = ±1).

They represent the eigen modes of the beam - so called
’dry’ modes. λn - are the corresponding eigenvalues,
which are solution of the equation

λ3

n(tanλn + tanhλn) = −2kl.



For n = 1, 2, 3... the eigen modes are defined by

ψn = An(cosλnx+ Cn coshλnx), Cn =
cosλn

coshλn
,

1

An
=

√

1 + C2
n + 3 cosλn(sinλn + cosλn tanhλn)/λn.

In addition, for n = 0 we have eigen modes of other
type

ψ0 = A0( sinµx sinhµx+ C0 cosµx coshµx).

where λ4

0
= −4µ4,

C0 =
cosµ coshµ

sinµ sinhµ
,

A0 =(4
√

2µ sinµ sinhµ)/(cos2 µ(8µ cos 2µ+ 6 sin 2µ)+

+8µ+ 3 sin 4µ+ 6 cos 2µ sinh 2µ+ 3 sinh 4µ)1/2.

µ is a solution of the equation

kl

2µ3
=

1 + 2 sin 2µ exp(−2µ) − exp(−4µ)

1 + 2 cos 2µ exp(−2µ) + exp(−4µ)
.

The eigenfunctions ψn(x) satisfy the orthogonality con-
dition

∫

1

−1

ψn(x)ψm(x) dx = δnm,

where δnm = 0 for n 6= m and δnn = 1.
It should be noticed that for a simply supported

beam, the eigen modes and eigen functions have the
forms ψn(x) = cosλnx, λn = π(n−1/2), n = 1, 2, . . .
[1].

Substitution of equations (12) into (6) - (9) and so-
lution of the hydrodynamical part of the problem (1)
- (5) provide the following system of ordinary differ-
ential equations with respect to the principal coordi-
nates ~a = (a1, a2, a3, ...)

T and auxiliary vector-function
~d = (d1, d2, d3, . . .)

T :

d~a

dt
= (αI + κS)−1(βD~d+ ~f), (13)

d~d

dt
= −~a. (14)

Here dn = (βλ4

n)−1(αȧn + bn), ~f = (f1(c), f2(c),
f3(c), . . .)

T , I is the unit matrix, D is the diagonal
matrix, D = diag{λ4

1
, λ4

2
, λ4

3
, . . .}, S is the added mass

matrix. The elements of these vectors and matrices are
defined by

fm(c) =

∫ c

−c

√

c2 − x2ψm(x) dx, (15)

Snm(c) =

∫ c

−c

ϕn(x, 0, c)ψm(x) dx, (16)

bm(t) = −fm(c) +

∞
∑

n=0

ȧn(t)Snm(c). (17)

Here, the function ϕn(x, y, c) is harmonic in the lower
half plane, and satisfies equations (1)-(4) with the right
part of equation (2) being replaced by the function
ψn(x). It should be noticed, that all the elements (15)-
(17) are defined analytically.

The right-hand side of the system (13)-(14) depends

on ~a, ~d, c, but not on t. Therefore, it is convenient
to take c as a new independent variable, 0 ≤ c ≤ 1.
Differential equation for t = t(c) follows from (11) and
has the form

dt

dc
= Q(c,a, ȧ) =

c/2 + (a,Γc(c))

1 − (ȧ,Γ(c))
. (18)

where

Γn(c) =
2

π

∫ π/2

0

ψn(c sin θ)dθ,

Γnc(c) =
2

π

∫ π/2

0

ψ′

n(c sin θ) sin θdθ.

Multiplying the equations of the system (13), (14) by
dt/dc and taking (18) into account, we get

d~a

dc
= ~F (c, ~d)Q(c,~a, ~F (c, ~d)), (19)

d~d

dc
= −~aQ(c,~a, ~F (c, ~d)), (20)

where ~F (c, ~d) = (αI + κS(c))−1(βD~d + ~f(c)). The
initial conditions are

~a = 0, ~d = 0, t = 0 (c = 0). (21)

The initial-value problem (18)-(21) is suitable for
numerical simulations of the hydroelastic behavior of
the wave impact on an elastic plate.

NUMERICAL RESULTS AND DISCUSSION

The initial-value problem (18)-(21) is solved numeri-
cally by the fourth-order Runge-Kutta method with
uniform step ∆c. The condition that the numerical
scheme is stable was derived. The step ∆c has to de-
crease as O(N−2) if the number of modes N taken into
account increases. In present investigation N is equal
to 15.

Calculations were performed for the case L = 0.5m,
R = 10m, h = 2cm, E = 21 · 1010H/m

2
, V = 3m/s,

% = 1000kg/m3, %b = 7850kg/m3 where %b is the beam
density. This gives following values nondimensional pa-
rameters α = 0.314, β = 0.311. The displacement scale
is equal to 2, 5 cm, bending stiffness scale is equal to
420 N/mm2 and the time scale is equal to 0, 008s.

The numerical results for the elastic plate with edges
connected to the rigid main structure by linear springs
are compared with the results given in [1] for simply
supported plate. The analysis of the results obtained
for different values of spring rigidity gives:



• The evolution in time of the contact point veloc-
ity dc/dt are dependent of the spring rigidity. Figure
3 presents the time-dependent contact point velocity
dc/dt. Here line 1 refers to simply supported plate, line
2 to the rigidity kl = 100, line 3 to kl = 1, and line 4
to kl = 0.001. One can see that the duration of impact
stage grows as the rigidity of springs decreases.

Figure 3.

• Figure 4 shows the displacement of the plate edge
w(1) as a function of time. Line 1 corresponds to the
spring rigidity kl = 1000, line 2 to kl = 10, line 3
to kl = 1, and line 4 to kl = 0.001.

Figure 4.

• Figure 5 and Figure 6 show the distribution along the
plate of the displacements and stresses correspondingly
at the end of a impact stage. Curve 1 is for spring
rigidity kl = 1000, a curve 2 - is for kl = 10 and a
curve 3 is for kl = 0.001. One can see, that rigidity of
connectors has essentially influence on distribution of
both displacements and stresses.
• It is interesting to note that at the end of the impact
stage, the deflection of a plate at the central point is not
significantl affected by the springs rigidity . At kl =
1000, w(0) = 0.24, whereas at kl = 0.001, w(0) =
0.27.
• For the case of free fall motion all results are iden-
tical with case kl = 0.001.

CONCLUSION

The numerical results demonstrate, that at the begin-
ning of the impact stage, independently of rigidity of
the springs, the edges of a plate move toward the liquid

Figure 5.

Figure 6.

surface. This result may lead to separation of a ship
shell from the basic structure of the ship.

In general, the displacement of the plate grows as
the rigidity of springs is reduced. At the same time the
bending stresses in the plate decrease.

The constructed algorithm allows us to perform
analysis of elastic effects during the impact of a liquid
with thin-walled plates of limited extent. In addition,
free fall motion can be considered within this model as
a limit when the junction spring stiffness approaches
zero.
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