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Abstract. This paper focuses on a high-order velocity potential Boussinesq-type approach to compute
highly-nonlinear wave interaction with reflective coastal structures. This method proposed by Jamois
et al. (2005) has already shown the capability to take the large wave amplification phenomenon occur-
ring in front of reflective structures presented in Molin et al. (2005) into account. This phenomenon is
due to third-order interactions between the incoming and reflected wave fields on the weather side of
the structure. The numerical model presented here has been already validated on deep water experi-
ments conducted on a vertical plate model subjected to waves of normal incidence. We report here a
new extension of the model to oblique wave generation and our first results on cases involving run-up
on a vertical plate subjected to oblique waves. It is observed that run-up effects decrease as the angle
of the incoming waves increases.

1 Boussinesq-type approach

The Boussinesq method used here is based on the equations derived in Madsen et al. (2003). These
equations retain only up to third order derivatives with respect to velocities and are expressed in terms
of velocity potential instead of the commonly used horizontal velocities variables. The model is shown
to accurately propagate dispersive nonlinear waves up to dimensionless water depths of kh ≈ 10 and
the linear internal wave kinematics are accurate up to kh ≈ 3.5. Consider the irrotational flow of an
incompressible inviscid fluid with a free surface. A cartesian coordinate system is adopted, with the
x-axis and y-axis located on the still-water plane and with the z-axis pointing vertically upwards. The
fluid domain is bounded by the sea bed at z = −h(x, y) and the free surface at z = η(x, y, t).
Following Zakharov (1968), the free surface boundary conditions are written in terms of velocity
potential φ̃ = φ(x, y, η, t) and vertical velocity w̃ = (φz)z=η defined at the free surface :

ηt + ∇η · ∇φ̃ − w̃(1 + ∇η · ∇η) = 0 (1)

φ̃t + gη +
1

2
(∇φ̃)2 −

1

2
w̃2(1 + ∇η · ∇η) = 0 (2)

where ∇ = {∂/∂x, ∂/∂y} is the horizontal gradient operator and g = 9.81 m/s2 the gravitational
acceleration. Integrating η and φ̃ in time requires a means of computing the associated w̃, satisfying
the Laplace equation in the interior fluid domain and the kinematic bottom boundary condition given
below :

w + ∇h · ∇φ = 0, z = −h(x, y) (3)

The vertical distributions of the variables in the fluid are approximated by the following expressions :

φ(x, y, z, t) ≈ (1 − α2∇
2)φ̂∗ + ((z − ẑ) − β3∇

2)ŵ∗ (4)

w(x, y, z, t) ≈ (1 − α2∇
2)ŵ∗ − ((z − ẑ)∇2 − β3∇

4)φ̂∗ (5)
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where α2 ≡ 1
2(z − ẑ)2 − 1

10 ẑ2 and β3 ≡ 1
6(z − ẑ)3 − 1

10 ẑ2(z − ẑ). In (4-5) the utility variables φ̂∗

and ŵ∗ allow the introduction of Padé operators in the approximations resulting in far more accurate
equations. Optimal kinematics properties are obtained through expansions done about the level
z = ẑ = −h

2 in the water column. The kinematic bottom boundary condition relates φ̂∗ and ŵ∗ to
each other and the expansion (4) relates the velocity potentials defined at the free surface and expressed
at z = ẑ. The resulting 2 x 2 linear system to be solved is written: Ax = b, where x = {φ̂∗, ŵ∗}
and b = {φ̃, 0}. Thus the vertical velocity at the free surface w̃ can be computed from (5), which
closes the problem and allows the marching in time in the model. The numerical method used here
is based on the numerical recipes proposed in Fuhrman and Bingham (2004) and is fully described
in Jamois et al. (2005). To include fixed rectangular box-shaped structures into the fluid domain, a
staggered obstacle technique on a uniform rectangular grid is used. Thus, the structure is lying half
way between grid points. For exterior corner points the boundary conditions for mixed derivatives are
imposed following Bingham et al (2005). The filtering used throughout this work has been analysed
in Jamois et al. (2005). A local filtering is used once per time step around structural exterior corners
and one general smoothing over all the domain is used once per wave period in case of highly-nonlinear
waves (e.g. when some breaking located on wave crests was observed during experiments).

2 Oblique wavemaker

In order to generate oblique waves efficiently, a numerical set-up composed of six zones is used. Two
generation zones are located at one of the side-walls and at the entrance of the domain. Two sponge
layers are situated at one of the side-walls and at the end of the domain to absorb outgoing waves.
Two relaxation zones placed in front of generation zones allow the damping of backward reflected wave
fields due to the structure. Input wave conditions are computed using the theoretical stream function
solution given by Fenton (1988). As an initial condition, it is imposed on one part of the domain. To
prevent the numerical solution from disturbing diffraction processes, the stream function solution at
the side-wall is imposed gradually over the domain by using a ramping function advancing in time
at the group velocity of the incoming wave field. The size of the lateral sponge layer depends on the
angle of propagation of the incoming wave field and is shown to be related to the normal wavenumber
component, lsponge ≈ 2(2π

kx

) for waves propagating along the y-direction. For angles less than 10◦, the
numerical cost of a sponge layer is too expensive. The alternative is to enlarge sufficiently the fluid
domain. Thus, the structure can be placed away from any disturbing reflection from the side wall
which will be finally absorbed by the sponge layer located at the end of the domain. Results in both

Figure 1: Experimental set up on the plate.
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configurations are given in the next section. The main restriction of this numerical set-up is the size
of the lateral damping zone. Fortunately, the use of equations expressed in terms of velocity potential,
allow the model to handle very large domains due to a decrease of the computational effort (by a
factor of two) compared to a classical velocity formulation.

3 Results

We present here numerical investigations on the sensitivity of the run-up in front of a vertical plate
model to the angle of incidence of the incoming wave field. The test cases are based on a preliminary
experimental campaign that has been done in the BGO-FIRST offshore wave tank in La Seyne sur
Mer (France). The experiments were conducted on a vertical rigid plate 1.2 m long, 2 m high and 5 cm
wide located in the middle of the basin, which is 16 m wide and about 30 m long. Figure 1 presents the
experimental set up on the plate. The depth was h = 1.2 m. The plate was submitted to regular waves
of varying periods and steepnesses and located at about 14 m from the wavemakers. We consider the
wave period T = 0.8 s, which corresponds for linear waves to a wavelength L = 1 m, and the incoming
wave steepness H/L ≈ 0.06. Four different wave incidences were carried out for this particular case:
0◦, 5◦, 10◦ and 20◦. During the experiments, instead of generating oblique waves, the plate model
was rotated up to the corresponding angles and normal waves were generated. Unfortunately, due to
a problem with the control of the wavemaker motion, the experimental results of this campaign are
not reliable enough to be compared to numerical results and consequently only numerical solutions
are shown here. Tests on a similar experimental set-up will be soon reconducted and comparisons
with numerical results will be presented at the workshop. In the numerical simulations, the depth has
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Figure 2: Computed free surface envelopes along the plate on the weather side at a stationary state
for T = 0.8 s, H/L ≈ 0.06, 1◦ (left) and 5◦ (right).

been reduced to h = 0.65 m, leading to kh ≈ 4. The discretization used is ∆y = ∆x = L/20 m and
∆t = T/20 s. When using a lateral sponge layer, the width of the useful numerical basin has been
reduced to 12 m as the lateral boundary conditions correspond to radiation conditions. In case of
small angles the width of the domain has been enlarged up to 17 m in the most critical case, i.e. 5◦

here. The plate dimensions are 1.2 x 0.10 m due to the stencil used which is limiting the width of any
structure to 2∆y. All simulations were run in order to reach stationary states. Firstly, to demonstrate
the high sensitivity of the run-up to the angle of wave incidence, Figure 2 shows the computed free
surface envelopes along the GBS for an incidence of 1◦. It can be seen that under these conditions
the maximum of wave elevation in front of the structure is not located in the middle of the plate as
expected under normal incidence due to the symmetry of the problem. Figures 2 and 3 give the results
obtained for incidences of 5◦, 10◦ and 20◦.
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Figure 3: Computed free surface envelopes along the plate on the weather side at a stationary state
for T = 0.8 s, H/L ≈ 0.06, 10◦ (left) and 20◦ (right).

For small angles, large amplifications are observed confirming that in case of important reflected
wave fields, strong nonlinear interactions related to third order effects take place on the weather side
of the structure. These create some focus points on the structure, where an amplification factor of
about 4.5 in the wave height is predicted in the most critical case, i.e. 1◦ here. This results in a nearly
standing wave of steepness H/L > 0.2 and underlines the capability of the formulation to model ex-
tremely nonlinear waves. In case of an oblique incident wave field, the maximum of the free surface
elevation shifts gradually to one side of the plate when the angle of attack increases. For angles of
propagation greater than 20◦, the large run-ups related to third order interactions disappear leading
to a maximum factor of amplification of 2.65 in front of plate, which is close to a linear case result.
The reflected and incoming wave fields do not interact enough to create any nonlinear focusing on the
plate.
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