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1. INTRODUCTION

The flow generated by the water entry of a porous or per-
forated wedge is investigated. This activity is motivated
by the wish of achieving a reduction in the hydrodynamic
loads generated during the water impact of rigid and im-
permeable surfaces. The driving idea is to exploit such
a reduction to improve ships’ safety and comfort through
the interposition of an intermediate thin layer between the
rigid, impermeable, hull surface and the water. Other pos-
sible solutions consist in the interposition of a two-phase
air-water layer, through blowing air beneath the ship hull.

The presence of an intermediate thin layer between the
rigid contour and the water implies a modification in the
boundary conditions on the surface of the entering body.
Depending on the characteristics of the intermediate layer,
different boundary conditions have to be enforced which
relate the normal velocity at the external surface of the
layer to that on the solid contour and to the pressure field.
Simple relations occur in the case of porous and perforated
layers. In the former case the liquid flow inside the layer
is mainly driven by the balance between viscous losses
and pressure gradient (Darcy’s law). Hence, the boundary
condition along the surface of the layer in contact with the
liquid can be presented in the form:

(1)

where the coefficient o characterizes the porosity of the
layer, V,, is the normal velocity on the surface of the
layer and V,,s is the normal velocity on the surface of
main structure, which is assumed rigid and impermeable.
As a9 — 0, the impermeable boundary condition is ap-
proached.

For a perforated surface, the flow through the layer is
essentially governed by the balance between inertial terms
and pressure gradients. In this case the condition is usu-
ally presented in the form (Molin and Korobkin, 2001)

VnL = VnS — QP

2=2/m2
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Voo = Vas — X p/Qw » X ) (2)
1 being a discharge factor which is about 0.5, and k the
ratio between the area of the holes and the total area, p,, is
the liquid density. As kK — 0, the impermeable boundary
condition is approached.

In order to clarify the effect of intermediate layer onto
the pressure field and hydrodynamic loads, the water en-
try problem of a two-dimensional wedge is considered. The
liquid is assumed ideal and incompressible, the liquid flow
is symmetric and potential. The entry velocity V is con-
stant. It is well-known that for a rigid impermeable wedge,

the solution of the problem is self-similar once gravity and
surface tension effects are neglected. Within the same
assumptions, the flows generated by entry of porous or
perforated wedge are still self-similar. The role of the cor-
responding non-dimensional parameters a and Y, where
a = ayV oy, in terms of reduction of the total hydrody-
namic load and of the pressure peak is evaluated.

In the following, the self-similar problem is formulated
and the numerical method adopted for its solution is pre-
sented. As the free surface shape and the velocity po-
tential on it, as well as the hydrodynamic pressure in the
body boundary conditions (1) and (2), are unknowns, the
solution is achieved via an iterative approach. At each
iteration the boundary value problem is solved through a
boundary element method. As a result of the flow sin-
gularity a thin jet layer develops along the body contour.
The description of the flow within this thin layer is signifi-
cantly simplified by the use of a shallow water approxima-
tion which is coupled with the boundary element approach
used in the bulk of the fluid domain. Results are presented
in terms of free surface shape, pressure distribution along
the contour and total hydrodynamic load. As a prelimi-
nary validation step, solutions for a rigid and impermeable
wedge are derived and comparisons with those available in
literature are established.

2. FORMULATION OF THE PROBLEM

The self-similar solution for the water entry of a two-
dimensional rigid and impermeable wedge has been ana-
lytically formulated by Dobrovol’skaya (1969) in the form
of a rather complicated nonlinear, singular, integral equa-
tion in terms of the free surface slope. Owing to the be-
havior of the slope function at the jet tip, a very fine dis-
cretization and a quite sophisticated iterative procedure
are needed to solve the problem, as shown by Zhao and
Faltinsen (1993). Furthermore, in Dobrovol’skaya (1969)
the problem has been formulated in terms of the Wagner
function which significantly simplify the shape of the fluid
domain in the case of a rigid and impermeable body sur-
face. The same approach cannot be easily extended to the
case of a porous/perforated body contour.

Hence, in the following, the similarity solutions is de-
rived with the help of a different formulation. In terms of
self-similar variables (Figure 1)
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the boundary value problem governing the self-similar so-
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Figure 1: Sketch of the problem in self-similar variables.
Due to the symmetry about the x = 0 axis, only the right
hand side is shown.

lution about a porous/perforated wedge reads

bee + Py =0 in Q
¢n = cosy — f(p) on Sp
¢+ 5IVEP = &g +ndy on  Ss
V¢-VH =¢He+nH, on Ss
#(&mn) =0(1/p) for p—+ oo .

(4)
Equation H (£,7n) = 0 describes the position of the free sur-
face Sg, 2 denotes the fluid domain and Sp is the wetted
part of the body surface. The normal to the body contour
n is assumed to be oriented inside the fluid domain, so
that n = (sin+y, — cos+y), 7y being the deadrise angle of the
wedge. The presence of a porous or perforated layer is
represented by the function f(p). The pressure p is nondi-
mensionalized by the product g, V2, where g, is the liquid
density. For porous wedge f(p) = ap and for perforated
wedge f(p) = xy/p- The intermediate porous/perforated
layer is assumed very thin, this is why the body boundary
conditions are imposed on the surface of the main struc-
ture, n = {tany — 1.

Although the above system of equation is independent
of time its solution is still complicated because the bound-
ary conditions on the free surface are strongly nonlinear
and the free surface shape itself is unknown and has to be
determined as a part of the solution. A significant simpli-
fication of the problem can be achieved by introducing a
modified velocity potential S(&,7)

S(Em) = o(&.m) — 5" )

which satisfy the Poisson equation V2S = —2. From this
definition the body boundary condition

¢n = petany — 1+ f() ,

cosy

can be recast in the form

S":S§tanv+$f(l9) = Sp=—f®) . (6
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Figure 2: Sketch of the free surface configuration about
the jet tip: 7 is the curvilinear coordinate along the free
surface with 7 = 0 at the jet tip.
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It can be shown that the kinematic and dynamic boundary
conditions on the free surface provide
Lo
Sn=0,S+§ST=0. (7
In the above equations, 7 is the parameter along the free
surface which is assumed to be zero at the intersection

point between the body contour and the free surface (Fig-
ure 2). Finally, in terms of S, the far field condition reads

1
SEm) = -0 as proo. (8)
The main advantage in using the modified velocity po-
tential is that the dynamic boundary condition on the free
surface can be integrated analytically, thus yielding
1,
S(r) = U 9)

The similarity solution is obtained with the help of a
pseudo-time iterative procedure. A first guess for the free
surface shape is assigned and, starting from the intersec-
tion point with the body contour, the curvilinear abscissa
7 is initialized. In the body boundary condition the pres-
sure is set zero at the first step of the iterative procedure.
The boundary value problem

Vo =0 in Q
¢n =cosy— f(p on S
Y (p) B (10)
¢ =35> -7 on  Sg
¢ —0 as p— oo

is solved through a boundary integral representation of the
velocity potential, thus providing the velocity potential
along the body surface Sp and its normal derivative on the
free surface. From the former, the pressure distribution
along the body contour is updated as

p=—p+b, Ecosy+nsiny) + gncosy — 2[4+ 8]
(11)

while the normal derivative of the velocity potential along

the free surface with the help of equation (5) provides S,

as

Spn=¢n—p-n .
Then we check if the kinematic condition S,, = 0 is sat-
isfied along the free surface. If this is not the case, the



free surface configuration is updated, the velocity poten-
tial along it is reinitialized and the boundary condition
along the body contour is updated by using the new pres-
sure distribution. After that the boundary value problem
(10) is solved once again and the iterative procedure is
repeated until convergence is achieved.

3. NUMERICAL MODEL

The boundary value problem (10) is numerically solved
through a boundary integral representation of the velocity
potential which gives the velocity potential at any point
P of the fluid boundary. In the far field, the velocity po-
tential is approximated with a dipole solution intensity of
which, Cp, is unknown and is derived together with the
solution of the boundary value problem. The boundary
of the fluid domain is discretized with straight line pan-
els along which a piecewise distribution for the velocity
potential and for its normal derivative is assumed. By ex-
ploiting the symmetry with respect to the £ = 0 axis, only
the right hand side of the fluid domain is discretized and
the image contribution is accounted for when evaluating
the influence coefficients.

Once the boundary value problem (10) is solved, both
the tangential and the normal velocity components are
evaluated along the body contour and the free surface.
The former are used to obtain the pressure distribution
along the body surface. The latter are used to update
the free surface shape in a time stepping fashion using
VS = V¢ — p as a pseudo-velocity field (see Iafrati and
Korobkin, 2004).

From the numerical point of view, a second order Runge-
Kutta method is used for integration in time of the motion
of the panel centroids. For stability reasons, the time step
is chosen so that the product of the velocity by the time
step is always smaller than one fourth of the correspond-
ing panel size. At each iteration the distribution of the
free surface panels is reinitialized with the new panel ver-
tices located along a cubic spline curve passing through
the centroids. The velocity potential along the free sur-
face is also reinitialized at each iteration and the matching
with the dipole solution is enforced in the far field.

Owing to the flow singularity at the intersection, a jet
develops along the body contour. For small deadrise an-
gles this jet is so thin that accurate description of the flow
inside the jet cannot be easily achieved with boundary ele-
ment approaches. Hence, a shallow water model similar to
that adopted in Battistin and Iafrati (2004) is developed
and coupled with the boundary element solver. The shal-
low water model is activated when the angle between the
free surface and the body contour drops below a threshold
value. When the model is activated, the thinnest part of
the jet layer is removed from the boundary element repre-
sentation and the shallow water solution provides a known
contribution.

4. NUMERICAL RESULTS

Numerical simulations have been done for the rigid (im-
permeable) wedge with v = 10, 20,30 and 60 degrees and

comparisons are established with results obtained by Zhao
and Faltinsen (1993) through the Dobrovol’skaya’s model
(DOB) and the fully nonlinear numerical approach (NUM).
Comparisons, reported in Tables 1-4, are established in
terms of the vertical coordinate of the jet tip np, the max-
imum pressure coefficient Cp, .., the vertical coordinate
of the pressure peak location ¥,,,, and the total, nondi-
mensional, vertical force acting on the wedge, F/(0,V3t).
Comparisons indicate that the present method is rather
reliable and accurate both in term of free surface shape
and pressure distribution.

ZF (DOB) Present
10 2.1004 2.0971
20 1.9955 1.9920
30 1.8363 1.8278
60 1.0848 1.0822

Table 1: Vertical coordinate of the jet tip n5.

vy ZF (DOB) ZF (BEM) Present
10 77.847 80.200 77.661
20 17.774 18.200 17.727
30 6.927 6.940 6.883
Table 2: Pressure peak pmaz/(0wV?) -
v ZF (DOB) ZF (BEM) Present
10 0.5556 0.555 0.5549
20 0.5087 0.488 0.5080
30 0.4243 0.400 0.4229
Table 3: Pressure peak location y,q5-
v ZF (DOB) ZF (BEM) Present
10 213.980 220.8 209.329
20 42.485 43.0 42.160
30 14.139 13.9 13.962

Table 4: Vertical hydrodynamic load F/ (0, V?>t).

After the validation, the self-similar solutions character-
izing the water entry flow about porous and perforated
layers are investigated. Calculations are carried out for a
wedge with deadrise angle v = 30 degrees and the govern-
ing parameters a and x being equal to 0.02,0.05,0.1,0.2,0.3,
0.4,0.5. For the perforated surface those values of x corre-
spond to hole area ratios k = 0.0199, 0.0493, 0.0976, 0.1910,
0.2809, 0.3679, 0.4529. The behaviour of the most relevant
quantities is reported in Tables 5 and 6. In both cases, an
increase of a or x reduces the pressure peak, the wetted
length and the total hydrodynamic load. These features
can be seen from Figure 3 and 4.

a Cpmam Ymaz nB F/(ng3t)
0.00 6.882740 0.422905719 1.827831 13.9625087
0.02 6.593664 0.405187994 1.775493 12.9453171
0.05 6.203160 0.380712384 1.704327 11.6086952
0.10 5.681808 0.345140679 1.604201  9.9821119
0.20 4.877164 0.288795334 1.457262  7.6923284
0.30 4.284656 0.244194449 1.354996  6.2128531
0.40 3.825980 0.215028445 1.280468  5.1779648
0.50 3.454216 0.185550673 1.222982  4.4649639
Table 5: Behavior of the most relavant quantities

for increasing « in the case v = 30.



X Cpran Ymaz B F/(QwVSt)
0.00 6.882740 0.422905719 1.827831 13.9625087
0.02 6.697824 0.409863377 1.796141 13.2888253
0.05 6.436386 0.398841182 1.745535 12.3562410
0.10 6.025650 0.369702315 1.667528 10.9096911
0.20 5.331568 0.312691862 1.530475  8.7011256
0.30 4.742064 0.268646388 1.416978  6.9656666
0.40 4.240086 0.228510729 1.323106  5.6041193
0.50 3.810718 0.195651993 1.245613  4.5751506
Table 6: Behavior of the most relavant quantities

for increasing x in the case v = 30.
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Figure 3: Behaviour of the quantities listed in Table
5 versus . Quantities are divided by the correspond-
ing value for a = 0. C solid, ¥mqe dash, np dot,
F/(0,V?3t) dash-dot.
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Figure 4: Behaviour of the quantities listed in Table
6 versus x. Quantities are divided by the correspond-
ing value for x = 0. C solid, ¥mqe dash, np dot,
F/(0,V?3t) dash-dot.
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It was revealed that the jet thickness vanishes when the
permeability of the intermediate layer increases, thus mak-
ing the description of the flow very challenging even for
moderate deadrise angles. This aspect is shown in Figure
5, where the free surface profiles obtained for several a
are drawn. In addition to the reduction of the jet thick-
ness, a much sharper change in the slope occurs as the
porous/perforated parameter is increased. Due to the very
small thickness of the jet layer, the evaluation of the pres-
sure field for relatively large values of a (or x) is also
very challenging and needs the development of different
approaches. In Figure 6 the pressure distribution along
the wetted part of the body are shown for porous lay-
ers. A rather uniform reduction of the pressure field is
achieved, along with a contraction of the wetted area. As

Figure 5: Effect of the porosity parameter a on
the free surface shape: curves are drawn for a =
0,0.1,0.2,0.3,0.4,0.5.

indicated by the data listed in Tables 5 and 6, the location
of the pressure peak moves toward the wedge apex.
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Figure 6: Effect of the porosity parameter a on the
pressure distribution. = Curves are drawn for a =
0,0.1,0.2,0.3,0.4,0.5.
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