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Introduction 

In this paper we study the dynamics of three-dimensional body-fluid impacts by means of CFD simulation. The 
initial stage of impact of a ship on a free surface, i.e. slamming, has been studied extensively by analytical methods and 
numerical methods based on BEM assuming potential theory and neglecting gravity and air flow (e.g., Faltinsen and 
Zhao, 1997). However, problems that can be treated by analytical methods are restricted to two-dimensional or 
symmetrical three-dimensional cases with simple body geometries. A BEM is more general and flow separation from 
sharp corners can be handled, but it is troublesome to handle flow separation from continuously curved surfaces, e.g., 
spheres. On the other hand, recent development of Navier-Stokes equation based CFD methods makes it possible to 
treat three-dimensional complicated engineering problems. As CFD methods usually solve flows in a discrete way both 
in time and in space, it may be difficult to calculate impact loads accurately due to very sharply variation of pressure 
both temporally and spatially. Therefore the authors consider that to develop a combined analytical and CFD method, 
which is the goal of the current research, should be a possible approach to a practical engineering impact problem. In 
this stage of research, we develop a three-dimensional CFD method for this purpose. The method that is being 
developed and improved is a CIP (Constrained Interpolation Profile, Yabe et al. 2001) based Cartesian Grid Method.  

The CIP based method proposed in this paper was developed by the authors for strongly nonlinear marine 
hydrodynamic problems such as slamming, water on deck, wave impact by green water, and capsizing due to 
large-amplitude waves (Hu and Kashiwagi, 2004). The reason for applying CIP method is from its two key features: (1) 
a compact support high order upwind scheme with sub-cell resolution for advection calculations and (2) a fractional 
step method for hydrodynamic problems in which the pressure is solved by a Poisson equation. The feature (1) helps us 
to obtain good accuracy for advection calculations at free surfaces and body boundaries where flow quantities vary very 
sharply. Owing to this feature we developed a CIP/function-transformation method as an interface capturing method for 
the 3-D water entry problems. The feature (2) provides us a robust flow solver for multi-phase computations, in which 
both compressible and incompressible flows can be treated simultaneously. In this paper we assume incompressible 
flows since the compressibility of the fluid is a less important factor to the studied problems. The use of incompressible 
flow assumption also makes the solver more computationally efficient. 

A stationary non-uniform Cartesian grid is used in our method for that such grid can greatly simplify the structure 
of the code and increase the computation efficiency for problems with complicated free surfaces and moving bodies. 
Moreover, many advantages of CIP method are related to Cartesian grid. Nevertheless, the use of Cartesian grid usually 
has the disadvantage of its low order accuracy near body boundaries because the grids generally do not conform to the 
body boundaries. Efforts to improve the accuracy near the body surface have resulted in various kinds of numerical 
methods for Cartesian grid approach. The most famous method may be the immersed boundary method originated from 
the work by Peskin (1972), in which a force term is introduced to the momentum equation to describe the boundaries. 
Our method to handle the immersed moving boundary is designed using similar idea to the immersed boundary method. 

In this extended abstract, we will briefly describe our method. Then two 3-D numerical examples, water entry of a 
sphere and a cylindrical body falling into a free surface will be given. The first example is compared to experimental 
and BEM results and reasonable good results are obtained. From the second example we show that the proposed method 
is robust enough to handle extremely complicated free surface development in water entry problems, such as impact 
with a body, breaking, merging and splash. 



Governing Equations 
The governing equations for fluid are unsteady, 

viscous, incompressible Navier-Stokes equations. 
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Where ijσ  is the viscous stress tensor. The last 

term on the right-hand side of Eq. (2) denotes the an 
internal force, e.g., a gravity force, etc..  We also 
define a density function mφ  to distinguish different 

materials in a Cartesian grid, as shown in Fig.1. Here m=1, 2, 3 denote liquid, gas, and solid phases, respectively. The 

density function for each computational cell has the relation 1.0mφ =∑ . It can be solved by the following equation:  
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3 1.0φ =

free surface 

body boundary 

Fig.1 Density functions for multi-phase problems. 

0m m
i

i

u
t x
φ φ∂ ∂

+ =
∂ ∂

                                       (3) 

In order to apply CIP scheme, Eqs. (2) and (3) are differentiated with respect to the spatial coordinates. Defining 
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where χ  represents each of and iu mφ  in Eqs. (2) and (3), respectively. H denotes the right hand term of the 

equations . Equations (1-3) are the governing equations, and solved numerically by a fractional step method in which 
these equations are divided into an advection step and two non-advection steps.  

The advection phase calculation is performed by CIP method, which is described as follows. 
 
CIP Formulation in Three Dimensions 

By CIP scheme, the profile inside a computation cell is approximated by an interpolation function. For 
three-dimensional case, let us consider a grid point (i, j, k), we can find an upwind cell with eight grid points: (i, j, k), 
(iw, j, k), (i, jw, k), (i, j, kw), (iw, jw, k), (iw, j, kw), (i, jw, kw) and (iw, jw, kw). Here, iw=i-sign(u1), jw=j-sign(u2) and 
kw=k-sign(u3). The cubic polynomial we are using to approximate the spatial distribution of the value χ  in the upwind 

cell is as follows. 
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where 1 1 1ix xη = − , 2 2 2 jx xη = −  and 3 3 3kx xη = − . Eq. (15) contains 20 unknown coefficients, , which can 

be determined by using the known values of
lmnC

nχ  and ( )n
ξ χ∂  at the grid points (i, j, k), (iw, j, k), (i, jw, k) and (i, j, kw), 

and the value of nχ  at the grid points (iw, jw, k), (iw, j, kw), (i, jw, kw) and (iw, jw, kw). Here the superscript ‘n’ 

denotes the current time level. 
Once the interpolation function is determined, the advection phase calculation is carried out by a semi-Lagrangian 

procedure as 
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where the superscript ‘*’ denotes the time level after the advection step.  
 
Treatment of Free Surface and Body Boundary 

There are two kinds of the interface with the problem: the gas-liquid interface (free surface) and the solid-fluid 
interface (body boundary). Different capturing methods are developed for them. 
  The free surface can be captured by solving Eq. (3) about the density function of liquid 1φ  with CIP method. By 

using a function transformation ( )1φΦ = Φ

solve the following equation with CIP method. 

 the sharpness of the interface can be enhanced, i.e., instead of Eq. (3) we 
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 where 1α >  is the sharpness enhancement para
For the numerical examples shown in this paper, 

meter. 
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he solid body boundary, we only consider the and we can use a LagranFor t rigid body case gian method to directly 

calculate the density function for the solid phase 3φ  and the local velocity of the body 1ˆ nUi
+ . To numerically realize this 

for three-dimensional case, we use particles to ap ate the body. As shown in Fig. e particles are distributed on 
the body surface. After the hydrodynamic forces on the body are obtained, it is not difficult to calculate translational and 
rotational velocities at the gravity center of the rigid body, and the velocity for new time step at any particle can 

therefore be obtained. Then the velocity at a body boundary cell 1ˆ nU

proxim 2, th

i
+ , which is required to specify as the boundary 

condition, can be calculated by using the velocities at the particles. Both slip and no-slip conditions for velocities at the 
boundary can be achieved by this method. In the present numerical solution procedure, the method of imposing the 
velocity distribution inside and on the body boundary is equivalent to apply a forcing term to the momentum equation. 
The following updating is done after the computation of Eq. (2).  
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In boundary cell Eq. (8) is a volume fraction weighting treatm
 

umerical Results  
ation example is the impact of a sphere with constant downward speed V on a free surface. The 
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ent for velocity interpolation. 
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The first comput
 problem was studied by Faltinsen and Zhao (1997) with a boundary element method. Fig. 3 and Fig. 4 show the 

results for the slamming coefficient 2 20.5C F V Rρ π=  and the wetting factor3s w bC Vtη= , where bη  is the free 

surface elevation at the body surface m phere bottom. We note th ming coe cient easured from the s at the slam ffi sC  is 
generally lower than the experimental results when 0 0.2Vt R≤ ≤ . Since the slamming force is proportional to the 

solid body 
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Fig. 2 Particles used to define body boundary. 
 



wetted surface and its rate of change with time, the lower predicted sC  is consistent with the lower predicted wC .  

The second example is a cylindrical body falling into a free sur e as shown in Fig.5 and Fig.6. Problems like this fac
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Fig. 3 C

Fig.5 A cylindrical body (L=5m, D=1m) with same 
density as water, falling into a free surface. 
Initial condition is XG0=0m, ZG0=3m 
and 62 πα −= .  
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Fig.4 Comparison of wetting factor                                                 

Fig.6 Time variation of gravity center positions 
(XG, ZG) and rotation angle 2α  
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