Three-dimensional Wagner problem using variational inequalities

Thomas GAZZOLA? Alexander KOROBKIN/ Sime MALENICA?} Yves-Marie SCOLANS

Introduction

Water impact remains a challenge for researchers. Wag-
ner introduced in 1932 a simplified model of great use [12].
A main issue of the Wagner model is that the contact
line between the disturbed free surface of the liquid and
the surface of the entering body is unknown in advance
and is a part of the solution. For two-dimensional and
axisymmetric cases, the Wagner problem has been exten-
sively studied in the past. Efficient methods for these two
cases have been developed. In three-dimensional case, the
contact line is a two-dimensional unknown curve. During
the last decade the three-dimensional Wagner problem re-
ceived increasing attention, leading to several analytical
solutions and novel numerical algorithms.

In this paper the linearized Wagner problem is solved by
using the variational inequality method [4], which finally
reduces the original problem to a constrained minimiza-
tion problem. The obtained results are compared with
known analytical solutions. A fairly good agreement of
the numerical results with the exact solutions is obtained.
The developed method deals with unknown distribution of
the displacement potential over a finite part of the bound-
ary of the flow domain and does not require meshing the
whole flow domain. The latter is important to reduce the
computational time for 3D impact problems. Linear finite
elements and an adaptive re-meshing algorithm are used
to evaluate accurately both the displacement potential on
the wetted part of the entering body surface and the shape
of this wetted part.

Variational inequality
for the Wagner problem

We consider the three-dimensional problem of unsteady
liquid flow arising when a blunt body enters an ideal in-
compressible liquid through its free surface. At time ¢ =0,
the liquid is at rest and occupies the lower half-space, {z <
0} = Q = {(z,y,2) € R2 x R~} ; a blunt body touches
the liquid free surface, {z = 0} = {(=,y,2) € R? x {0}}
at a single point taken as the origin of the Cartesian co-
ordinate system (Ozyz). The liquid flow caused by the
impact is assumed potential.
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Within the Wagner approach the boundary conditions on
both the liquid free surface F'S(t) and the wetted part
W S(t) of the entering body surface are linearized and im-
posed on the initial position of the liquid surface, {z = 0}.
The line I'(¢), which separates the regions F'S(t) and
W S(t), is unknown and has to be determined as a part of
the solution.

The arising boundary-value problem can be reduced to a
variational inequality (see [4]) by using the concept of the
displacement potential ¢ defined as:

t
6P (#,1) = / o, 7) dr (1)

where ¢ is the velocity potential. This approach was re-
produced in [6], two-dimensional numerical calculations
were performed in [3] and first three-dimensional numeri-
cal computations in [10].

In this section, the main steps of the approach based on
the formulation of the water impact problem as a varia-
tional inequality are outlined.

The boundary value problem for the displacement poten-
tial has the form (see [4]):

ApP =0 in Q= {z<0}
P =0 on FS(t)
o
¥ f(z,y) — h(t) on WS(t)
¢P =0 when z2 + y? + 22 = 00

(2)
where the function f(z,y) describes the body shape and
h(t) is the penetration depth, h(0) = 0, f(0,0) = 0.
Pressure p(z,y,t) is calculated by using the linearized
Bernoulli equation p = —py ¢, where py, is the liquid
density. The contact line I'(¢) in the boundary-value prob-
lem (2) is determined from the condition that the dis-
placements of the liquid particles, V¢, are finite. It was
shown in [4] that the latter condition is equivalent to the
classical Wagner condition but much easier to deal with.
Within the approach derived in [4] two extra conditions
are used. The first condition follows from the requirement
that the pressure is positive in the contact region WS(t)
and the second condition that the liquid particles cannot
penetrate the body surface. By integrating the inequality
p > 0 twice in time, we obtain:

#P <0 on WS(t). (3)
The second condition provides:
D
20 < 5(® ~ h(t) on {z = 0}. ®)
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Taking into account the boundary conditions in (2), we
obtain the equality:

D
P (% + h(t) — f(:i:’)) =0on {z =0}. (5)

We introduce the symmetric bilinear form a and the linear
form [ defined by:

a(u,v) = ///{ . VuVv dz dy dz, (6)
W= [ v@-nevaa, @

and the functional space W!(Q) (see [7])
w«m:{v;ﬁ,g—;,g—;,g—:wm)}, ®

where L%(f) is the set of functions which are square in-
tegrable on 2, and the cone K C W1(Q) is the set of el-
ements of W' (), which are negative or zero on {z = 0}.
One can show that the problem for the displacement po-
tential with the boundary inequalities (3), (4) and the
boundary condition (5) can be reduced to a variational
inequality:

a(¢”,v = ¢P) 2 1(v — ¢7),Yv € K. (9)

It is proved in [7] that the bilinear form a is coercive on
functional space W1(Q). This property allows us to say
(see [1]) that (9) has a unique solution in K and that this
solution minimizes on K the functional:

J(v) = %a(v,v) _i(w)

Thus the variational inequality problem can be reduced
to the constrained minimization of J on the cone K. See
for example [11] for more details on the methods used to
solve this kind of problem.

(10)

Bilinear form a on {z = 0}

Equations (6) and (7) define the symmetric bilinear form
a and the linear form [. Since it is impossible to mesh
the whole infinite fluid domain {z < 0} and since we
do not want to impose fixed and arbitrary boundaries in
the far field, the bilinear form a is represented in another
form, using the fact that the final solution must satisfy the
Laplace equation in the flow domain. This is equivalent
to searching for the function v minimizing J in the subset
of K which contains only harmonic functions. Moreover,
it is possible to replace the triple integral in (6) by a two
dimensional integral over a finite region without new ap-
prozimation.

We know that ¢ = 0 on the free surface. It is possible to
build a closed domain D of {z = 0}, such that one is sure
that for every point of {z = 0} and outside of D, ¢ =0
(see figure 1).
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Figure 1: Rewriting bilinear form a on a finite domain of {z=0}

By using the known solution of the Dirichlet problem for
the lower half-space, we obtain:

a(u,v) = 5- // / Vau(e,y) Va0 (20, yo)

(z,y)€D(z0,y0)ED
dxg dyo dzx dy

V(@ = 20)% + (v — 30)”
where Vo = (%, a%) is the planar gradient on the lig-
uid surface, {z = 0}. Linear finite elements are used to
approximate the integrals in (11).
First the domain D is decomposed into a set of elementary
panels and the gradients Vsu and Vyv are approximated
by constants vectors on each panel. Then the bilinear
form a in (6) can be approximated by:

(11)

a(v,v) V- AT, (12)

where ¥ is the vector, components of which, v;, are un-
known values of the displacement potential at the nodes
of the panels, and A is a symmetric matrix. Components
of the matrix A were obtained analytically in the 2D case
and are calculated numerically in the 3D case. In the same
way the linear form [ in (7) is approximated as

I(w)~ L -7, (13)

where the vector L is dependent on both the entering body
shape and the penetration depth. This vector is evaluated
numerically.

Finally the original problem is reduced to the problem of
minimizing the following quadratic form under the con-
straint that all the elements v; of the vector ¢ are negative
or Zero:

min

14
min (14)

(%ﬁ-A-ﬁ—E-ﬁ‘)

Numerical results

The aim of this section is to compare the obtained nu-
merical results with the analytical solutions. The three-
dimensional method is tested with the help of the analyt-
ical solution for a cone [8]. The inverse Wagner theory



[9] also leads to analytical solutions, which are used in
this section. Finally, numerical computation for the pyra-
mid impact problem, which up to now has no analytical
solution to our knowledge, are performed.

In order to optimize computation time with respect to
precision of the result, we use an adaptive re-meshing al-
gorithm (see [2]).

In cone and pyramid entry problems the flow is self-similar
within the Wagner approach and depends on the deadrise
angle in a simple way. Once numerical calculations have
been performed for a particular deadrise angle, the numer-
ical results can be applied to any deadrise angle by using
appropriate stretching of the spacial coordinates and the
displacement potential.

Cone entry problem

The axisymmetric solution of the Wagner problem is
known (see [8]). Let 8 be the deadrise angle of the cone.
We denote r = /22 + y2, rw (t) the radius of the circular
contact line, p = r/rw and h(t) the penetration depth.
The radius rw (t) is given as:

4h

m tan B’ (15)

Tw =

and the displacement potential in the contact region as:

¢ (p) = %T%V tanﬂ<p2 Argch% -V1- p2> (16)

We chose to test the variational inequality method with
h = 0.4 and tan 8 = 1.5. Figure 2 presents the difference
between the theoretical displacement potential and the
numerical results. Very good agreement between the
numerical and theoretical distributions is clear, since
absolute error is less than 1.2 - 1074,

The theoretical radius ry ~ 0.3395. The contact line
is an implicit result of the variational inequality method.
We call half-wet elements the elements which have at least
one node with zero potential, and at least one node with
non-zero potential. We use the center of gravity of these
elements and a best fit method [13] to find the parameters
of the contact line. Table 1 gives the numerical results for
the three meshes used. One can see that the mesh refining
method makes the numerical solution tend to the analyt-
ical solution. Note that the calculations were performed
with three-dimensional code without assumption that the
solution is axisymmetric and self-similar.

dof rw
1% mesh | 441 | 0.3329
274 mesh | 1365 | 0.3330
374 mesh | 2742 | 0.3361
theory 0.3395

Table 1: Results for cone entry problem
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Figure 2: Difference between the numerical solution for the cone
entry problem and the analytical solution, on {z = 0}

An inverse Wagner problem test case

A method to solve the inverse Wagner problem is de-
scribed in [9]; on the assumption that the contact line
is elliptic, for a known contact line with respect to time,
for any given velocity or acceleration entry, a method is
set up to build the body shape which generates the given
contact line. We compute the body shape which gener-
ates an elliptic contact line of semi axes a = %sin %’rt,
and b = t + 25¢2, with a zero initial entry velocity, and a
constant entering acceleration of 1.

The variational inequality method is supplied to the
body computed by the inverse method. The contact line
numerically computed should be the contact line that
was defined for the inverse Wagner problem.

For a penetration depth h(t) = £t* = 0.0006, we obtain

a ~ 0.1858 and b ~ 0.0646. Table 2 presents the results:
numerical results tend to the theoretical solution.

dof a b
1%¢ mesh | 441 | 0.1745 0.0561
274 mesh | 1019 | 0.1789 0.0611
3" mesh | 1406 | 0.1812 0.0627
4th mesh | 2587 | 0.1838 0.0636
theory 0.1858 0.0646

Table 2: Results for the inverse Wagner problem

The pyramid

To our knowledge, the pyramid impact has no ana-
lytical solution. A first asymptotic analysis attempt
was performed in [5]. We studied the entry of pyramid
z = 2(|z| + |y|), for penetration depth of h = 0.5.

Figure 3 shows the displacement potential for this pyra-
mid impact. Figure 4 presents the comparison between
the variational inequality method and the first order of
the asymptotic method [5]. For the purpose of compari-
son, the contact line obtained is approximated as a para-
metric curve:



{ z(A) = ag+ >, ancos(n)
y(A) = bo+ X7 bnsin(n)

and the results are given in table 3 (with n, = ny = 5).

(17)
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Figure 3: Displacement potential for the pyramid on {z = 0}
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Figure 4: Comparison between the variational inequality method
and the asymptotic method [5]. Since the solution is periodic, only
a quarter of the domain is plotted. The dot-dashed line is the in-
tersection between the pyramid and the plan {z = 0}. The points
are the center of gravity of the half wet elements. The dashed line
is the result of the asymptotic method [5], and the continous line is
the result of interpolation given in table 3.

ag a1 a2 a3 a4 as
~0 | 0.2525 | 0.00108 | 0.0375 | -0.0002 | -0.0081
bo by bo b3 b4 bs
~0 | 0.2622 | -0.0003 | -0.0300 | -0.0005 | -0.0094

Table 3: Results for the pyramid impact

Conclusions

A variational inequality method to solve the three-
dimensional Wagner problem is proposed. The well-

posedness of the formulation is justified. The problem
can be written as a constrained minimization problem.
The comparison between numerical results and analytical
solutions shows a good agreement.

A future work consists in precise evaluation of the pres-
sure.
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