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Introduction

In this paper we report on the development of a time accurate fully non linear potential flow model for simulating
of the generation and propagation of gravity waves in finite depth, in 2D or 3D geometries. This Numerical
Wave Tank (NWT) relies on a new non-periodic HOS technique based on the original High-Order Spectral
(HOS) model of West et al. [1] and Dommermuth and Yue [2], and was presented in the previous workshop of
this series [3]. The generation process is either based on a model of the physical wavemaker, or on submerged
dipoles (see e.g.[4]). In the first case, the accurate geometry of the flaps, and advanced control strategies of
the wave maker motion can be taken into account. Perfectly reflective sidewalls and an absorbing beach at the
wall facing the wave maker are modelled. Besides its use as a tool for preparing and optimising experiments
in ECN’s ocean engineering basin, this model is also intended to provide an accurate description of non linear
waves, with numerous potential applications such as the study of the statistical properties of irregular sea
states in severe conditions (one of the benchmark studies of 24th ITTC), or to represent the incoming wave
model for irregular wave diffraction calculations using the SWENSE approach [5]. For such applications, further
developments related to global numerical efficiency, and to the determination of velocity and pressure fields in
the fluid volume were considered necessary. Such improvements are reported in this paper, together with recent
validation results.

Description of the model

Potential theory is used and free surface boundary conditions are rewritten as evolution equations for the surface
elevation and free surface potential. These two unknowns expressed on collocation points are time-marched once
the vertical velocity has been obtained through the solution of a Dirichlet problem for the potential. The latter is
solved by the HOS expansion of the potential in orders of the wave elevation in parallel with the order consistent
formulation of West et al. [1]. In this technique, spatial derivatives are calculated in the Fourier domain and
the potential at each order is originally expanded on the natural modes of the basin. This enables the use of
Fast Fourier Transforms and results in fast computations. Nonlinear products in physical space are carefully
de-aliased to keep a good accuracy. The numerical absorbing zone is modelled through a local modification of
the free surface dynamic boundary condition. The physical wavemaker motion may be included, presently only
in a linear way, through an inlet flux condition. To provide easy comparisons with measurements, the same
procedure is used both in numeric and experiments to calculate the wavemaker motion. For multi-directional
wave fields, the Dalrymple method [6] is used rather than the snake principle to avoid spurious diffraction on
the sides of the wavemaker and reflection on the sidewalls. In 2D calculations, the submerged dipole method
may be used [3], which allows the generation of steeper waves without local breaking.

Typical validations results

In the previous workshop, a significant validation results were presented, in which the present model was used
to generate regular nonlinear waves which very accurately recovered results of stream function theory [7]. More
practical validation results are presented here, in which the HOS NWT is used to model the new ECN wave basin
(50x30x5 m). We present here three different wave fields. The first comparison to laboratory measurements
deals with 2D irregular waves. A Bretschneider spectrum with two parameters (Hs=16 cm and Tp=2 s) has
been generated in with the same wavemaker motion in both the experimental and the numerical basins. Long
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time simulations are carried out. Figure 1 shows an example of a high amplitude wave packet reaching the
probe at time t=760 s. Nonlinear numerical results (long dashed line) fits well the experimental probe signal
(solid line) and further comparison with a previous second order model (dashed line) clearly illustrates the gain
of the fully nonlinear model.

Figure 1: 2D calculations compared to experi-
ments: irregular wave field

Figure 2: 2D calculations compared to experi-
ments: focused wave packet

The second application is related to the generation of focused wave packets. Figure 2 shows the wave
elevation at the focusing point (x=25 m from the wavemaker). The dotted line is the target wave packet we
want to reproduce. It is used to predict the wavemaker motion, following linear wave theory. The generated
wave field involves large amplitudes and incipient breaking. Measured wave elevation (dashed line) is different
from the target: the main differences being a different amplitude explained by second order effects and an
advance in time due to phase velocity modifications by third order effects. Numerical elevation (solid line)
correctly reproduces these two effects.

Figure 3: : 3D view of the focusing wave field Figure 4: : time evolution of probe elevation

Figure 3 shows a view of a 3D wave packet while it focuses towards the middle of the basin. This wave
packet is embedded in a directional irregular sea that we see at the front or behind the wave packet. Dalrymple’s
method [6] has been used to generate the oblique waves. The picture on the right represents the elevation of
a probe located at the focusing point in the middle of the basin. The simulated elevation (solid line) shows a
good agreement with the experimental one (dotted line).

Efficient calculation of wave kinematics

In a Higher Order Spectral Methos (HOS), kinematics within the fluid domain have to be calculated from
values at the free surface. We have developed such a technique in our model, based on a previous work by
Bateman [8], who developed the so-called H and H2 operators in a Dirichlet to Neumann Operator method
(DNO). It has to be mentioned that the DNO method in its accelerated version is strictly equivalent to the
HOS scheme, a fact that motivated us to adapt the H and H2 operators to our HOS scheme.
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The starting point of the method is to consider a variable known along the free surface (φ for example) as a
spectral expansion:

φ(x, y, η, t) =

Nx
∑

nx=0

Ny
∑

ny=0

Anxny (t)ψs
nxny

(x, y) with ψ
s
nxny

(x, y) = cos(knxx) cos(knyy) cosh

[

knxny (η(x, y) + 1)

]

From this expression, Fast Fourier Transforms could not be used directly to derive Anxny
. The underlying

idea in the development of H and H2 operators is to transfer the variable of interest from the free surface
z = η(x, y, t) to its value on z = 0. Then, FFT’s may be applied for an efficient calculation of Anxny

. The
reconstruction of the variable of interest along the z axis is straightforward. H2 operator differs from the H one
in the computation of the transfer described previously: the H2 operator split it into several steps. Bateman [8]
noticed that significant errors could appear in specific cases when using only the H operator. Then, we chose
to use the H2 operator.
Two different options are available for the determination of the fluid kinematics using this approach. In the first
one, the velocity potential is first reconstructed from values at the free surface, and then derived analytically to
access velocity components. In the second one, velocity components are directly reconstructed from their values
at the free surface. Both methods have been implemented, and compared to results of Rienecker & Fenton’s
stream function theory [7] in the case of regular non linear waves.
Here is presented a step to transform a variable of interest (φ for example) from the initial surface elevation
z = η(x, y, t) onto a new surface z = η2(x, y, t) (i.e. H2 operator). We write the Taylor’s series development for
this new value of z :

φ2(x, y, η2, t) = φ(x, y, η2, t) =

∞
∑

n=0

ηn
2

n!

∂nφ

∂zn
(x, y, 0, t)

To solve this system of equation we could write a triangular process:

φ
s = φ0(x, y, 0, t)

φ1(x, y, 0, t) = −η
∂φ0

∂z
(x, y, 0, t)

φ2(x, y, 0, t) = −η
∂φ1

∂z
(x, y, 0, t) −

η2

2

∂2φ0

∂z2
(x, y, 0, t)

. . .

φp(x, y, 0, t) = −

p−1
∑

n=0

ηn+1

(n+ 1)!

∂n+1φp−1−n

∂zn+1
(x, y, 0, t)

Then, we rebuild a second triangle to solve the quantity φ2(x, y, η2, t) we look for:

φ20
(x, y, η2, t) = φ0(x, y, 0, t)

φ21
(x, y, η2, t) = η2

∂φ0

∂z
(x, y, 0, t)

φ22
(x, y, η2, t) = η2

∂φ1

∂z
(x, y, 0, t) +

η2
2

2

∂2φ0

∂z2
(x, y, 0, t)

. . .

φ2p(x, y, η2, t) =

p−1
∑

n=0

ηn+1

2

(n+ 1)!

∂n+1φp−1−n

∂zn+1
(x, y, 0, t)

And, finally:

φ(x, y, η2, t) = φ2(x, y, η2, t) =

∞
∑

p=0

φ2p
(x, y, η2, t)

We use here a fully nonlinear wave generation with submerged dipoles (see Le Touzé [4]). Computations
for two steepnesses are shown there, ε = ka = 15.7% (H/λ = 0.05) and ε = ka = 30% (H/λ = 0.09) where we
choose a wave length λ = 0.5 in a basin of length Lx = 10 and with a depth h = 1. The submerged dipole is
located at xd = 2.5 ; zd = −0.25 and two numerical beaches are used between x = 0 and x = 1 and between
x = 8 and x = 10.

Figure 5 & Figure 6 shows the perfect agreement between reference Rienecker & Fenton’s solution and
our computation of kinematics using the velocity on free surface (relative error does not exceed 1%). However,
calculation using the potential on the free surface seems to be limited to small steepness where reconstruction
is really good. The better choice is thus to reconstruct the wave kinematics directly from values of the fluid
velocities at the free surface.
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Figure 5: ε = ka = 15.7%
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Figure 6: ε = ka = 30%

Calculation speed-up

In order to speed up our HOS calculations, in view of intensive simulations of irregular waves, we have considered
the application of the scheme presented by Fructus et al [9]. First results seems to be promising, and more
detailed conclusions will be presented at the workshop.

Conclusion

Recent developments of our HOS scheme for fully non linear water wave simulations have been presented. The
resulting scheme combines high accuracy and numerical efficiency, essential for applications such as the study of
the non linear behaviour of water waves, or the simulation of their interaction with ship or offshore structures,
using the recently developed SWENSE approach for the non linear wave-body interactions in viscous fluid.
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[4] D. Le Touzé, P. Ferrant. On the Optimal Use of Submerged Dipoles for the Generation of Unsteady Nonlinear

Waves, Proc. 18th International Workshop on Water Waves and Floating Bodies, Le Croisic, april 2003.

[5] R. Luquet , B. Alessandrini, P. Ferrant & L. Gentaz : Simulation of the Viscous Flow Past a Ship in Waves using

the SWENSE Approach, Proc. 24th ONR Symposium on Naval Hydrodynamics, St John’s, Newfoundland, august
2004.

[6] R.A. Dalrymple : Directional wavemaker theory with sidewall reflection. J. of Hyd. Research, 27(1):23-24, 1989.

[7] M.M. Rienecker & J.D. Fenton : A Fourier approximation method for steady water waves. J. Fluid Mech., 104:119-
137, 1981.

[8] W.J.D. Bateman. A numerical investigation of three dimensional extreme water waves, PhD Thesis, Imperial Col-
lege, 2000.

[9] D. Fructus, D.Clamond, J. Grue, O. Kristiansen, 2005 : An efficient model for three-dimensional surface wave
simulations. Part I: Free space problems. J. Comp. Phys. (in press).

4




