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There are two types of forcing that excite long-period oscillations in a harbor. The
first is the very long-period incident waves of tsunami origin. In this case a standing
wave mode is excited synchronously by incident waves of the same frequency. The
linearized long-wave theory and the weakly nonlinear improvement by Boussinesq ap-
proximation are pertinent, and effective numerical tools have been developed for appli-
cations. Resonance of long waves can also be forced nonlinearly by short-period waves
of wind orgin. Though less dramatic in damages, wind-waves affect frequently all har-
bors in the world and can hinder the loading and unloading of cargos. While there are
a few early studies focussed on narrow-banded incident waves Agnon & Mei [1]; Wu &
Liu [7], incident sea spectra are nearly always broad-banded. In recent years, the Port
of Long Beach has been plagued by such oscillations. Since the tools for prediction do
not exist, physical models and mathematical models have been conducted by assum-
ing linear synchronous resonance. New breakwaters have been built on the same basis,
despite the knowledge that the sea spectrum outside the Port contains little long-wave
energy. A theory for general bathymetry and harbor geometry, and random waves is
long overdue.

In the linearized framework, the mild-slope equation (MSE) of Berkhoff [2] is a use-
ful tool which reduces the computation of 3D refraction/diffraction problems to 2D,
and can be efficiently solved numerically by, e.g., the hybrid element method of [4].
The original MSE has been extended by Chamberlain & Porter [3] to include both first-
and second-order terms in the bed slope. In this paper two extensions of MSE are made.
First, terms which are second order in nonlinearity is added. Second, the incident waves
are random with prescribed frequency spectrum.

Specifically, at the first order in wave steepness O(ε = kA), the free surface of the
incident wave is described by the Fourier integral

ζ
(I)
1 (r, θ, t) =

∫ ∞

−∞
A (ω) eik(ω)r cos(θ−θI)−iωtdω, (1)

where A (ω) is the random amplitude spectrum, k (ω) the wave number governed by
the dispersion relation, and θI incident angle. The first-order velocity potential for the
entire refraction-diffraction problem can be written as

Φ1 (x, t) =

∫ ∞

−∞
A (ω)φ1 (x, ω) e−iωtdω. (2)

If the amplitude-normalized potential φ (x, ω) is assumed to be of the form,

φ1 (x, ω) = −ig

ω

cosh [k (ω) (z + h)]

cosh [k (ω)h]
Γ1 (x, y, ω) , (3)



it is known that the transfer function Γ1 is governed by the modified mild-slope approx-
imation of Chamberlain & Porter [3],

∇ · [a1∇Γ1 (x, y, ω)] +
[
k2a1 + gU1∇2h + gV1 (∇h)2] Γ1 (x, y, ω) = 0. (4)

where a1, U1 and V1 are known functions of kh. The elliptic boundary-value problem
can be efficiently solved by the hybrid-element method, if the far field is modeled as
a sea of constant depth, so that analytical representation can be used. Afterwards, the
first-order surface elevation is given by

ζ1 (x, y, t) =

∫ ∞

−∞
A (ω) Γ1 (x, y, ω) e−iωtdω. (5)

At the second order in nonlinearity, the potential is expressed as a double Fourier
integral,

Φ2 (x, t) =

∫ ∞

−∞

∫ ∞

−∞
A (ω1) A (ω2)φ2 (x, ω1, ω2) e−i(ω1+ω2)tdω1dω2, (6)

where φ2 must satisfy

∇2φ2 (x, ω1, ω2) +
∂2φ2 (x, ω1, ω2)

∂z2
= 0, −h(x, y) < z < 0, (7)

∂φ2 (x, ω1, ω2)

∂z
= −∇φ2 (x, ω1, ω2) · ∇h, z = −h(x, y), (8)

∂φ2 (x, ω1, ω2)

∂z
− (ω1 + ω2)

2

g
φ2 (x, ω1, ω2) = f (x, y, ω1, ω2) , z = 0. (9)

The forcing term on the free surface is

f (x, y, ω1, ω2) =

[
ig [k (ω2)]

2

ω2

− iω3
2

g
− i (ω1 + ω2)ω1ω2

g

]
Γ1 (x, y, ω1) Γ1 (x, y, ω2)

+

[
−i (ω1 + ω2) g

ω1ω2

]
∇2Γ1 (x, y, ω1) · ∇2Γ1 (x, y, ω2) .

(10)

Unlike the case of monochromatic incident waves, the transfer potential φ2 involves two
frequencies.

Denoting σ = ω1 + ω2, it is necessary to add evanescent modes for φ2,

φ2 (x, ω1, ω2) = −ig

σ

∞∑
m=0

ξm (x, y, ω1, ω2)
cos κm(z + h)

cos κmh
, (11)

where κm are the roots of the dispersion relation,

−σ2 = gκm tan κmh. (12)

In particular, κ0 is the imaginary root, corresponding to the propagating mode, while
κm, m = 1, 2, . . . are the real roots, corresponding to the evanescent modes. By repeating
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the solvability argument based on Green’s formula, we have found that ξ� (x, y, ω1, ω2)
are governed by a matrix paritial differential equations:

∞∑
�=0

{∇ · (Am�∇ξ�) + Bm�∇h · ∇ξ� + Cm�ξ�} = −iσf (x, y, ω1, ω2) (13)

for both sum and difference frequencies. The left-side is the same as Porter & Staziker
[5] for linear problems where f = 0. It can be shown that the matrices on the left are
diagonal and the equations uncoupled, only for constant depth. The coupled elliptic
problem can again be solved by the hybrid-element method with the help of Green’s
function in the far field where the depth is constant.

The second-order free surface elevation can then be found from Bernoulli’s theorem,

ζ2 (x, t) =

∫ ∞

−∞

∫ ∞

−∞
A (ω1) A (ω2) Γ2 (x, y, ω1, ω2) e−i(ω1+ω2)tdω1dω2, (14)

with

Γ2 (x, y, ω1, ω2) =

(
ω2

2

g
+

ω1ω2

2g

)
Γ1 (ω1) Γ1 (ω2) +

g

2ω1ω2
∇2Γ1 (ω1) · ∇2Γ1 (ω2)

+

∞∑
�=0

ξ� (ω1, ω2) .

(15)

Now we extend the nonlinear stochastic theory of Sclavounos [6] who studied the
simpler problem of random wave reflection from a long vertical cliff near a sea of con-
stant depth. Let A(ω) be a Gaussian random variable. Defining the covariance function
by

H(
x, τ) = ζ(
x, t)ζ∗(
x, t + τ). (16)

Due to Gaussianity, ensemble averages of all odd products of random variables A and
A∗ vanish, and ensemble averages of all even products (e.g., quadratic) can be reduced
to averages of quadratic products. It follows that

H(τ) = ε2ζ1(t)ζ∗
1 (t + τ) + ε4[ζ2(t)ζ∗

2 (t + τ) + ζ1(t)ζ∗
3 (t + τ) + ζ3(t)ζ∗

1 (t + τ)]. (17)

Note that nonlinear corrections start from O(ε4) which requires in principle one to find
not only the second-order response ζ2 but the third-order response ζ3. The last task is
prohibitively complicated for a refraction/ diffraction problem.

The corresponding frequency spectrum is of the form

S(ω) = ε2S2(ω) + ε4S4(ω) (18)

where S2 is the usual response spectrum in the linearized theory,

S2 = SI(ω)|Γ1(
x, ω)|2 (19)

which depends only on the linear frequency response Γ1(
x, ω). The nonlinear spectral
correction S4 is composed of two parts

S4 = S22 + S13 (20)

3



The first part is the self-product of second-order frequency response,

S22(ω) = δ(ω)

∫∫ ∞

−∞
SI(ω1)SI(ω2 − ω1)Γ2(ω1,−ω1)Γ

∗
2(ω2 − ω1,−ω2 + ω1)dω1dω2

+

∫ ∞

−∞
SI(ω1)SI(ω − ω1)

{|Γ2(ω1, ω − ω1)|2 + Γ2(ω1, ω − ω1)Γ
∗
2(ω − ω1, ω1)

}
dω1.

(21)

The second part

S13(ω) = 2SI(ω)Γ1(ω)

∫ ∞

−∞
SI(ω1) {Γ∗

3(ω, ω1,−ω1) + Γ∗
3(ω1, ω,−ω1) + Γ∗

3(ω1,−ω1, ω)}dω1

(22)
depends on the third-order frequency response Γ3(
x; ω1, ω,−ω1), in principle. Note
however, that (i) the incident-wave spectrum SI(ω) is outside the integral, and (ii) there
is negligible energy at low frequencies in usual sea spectra, i.e., SI(ω) ∼= 0 for small
ω (see, e.g, JONSWAP). Since we are primarily interested in long-period response in
the harbor, the part S13(ω) is of negligible importance to S4(ω). This fortunate result
makes it unnecessary to compute Γ3 and simplifies the task for the harbor problem.
Note further that in Eq. (21), the second-order response function Γ2(ω1, ω2) needs to be
computed only in a narrow strip (ω1 + ω2 = ω � 1) of the frequency plane (ω1, ω2).
Hence the numerical task is limited.

Numerical results for harbor response will be reported at the workshop.
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