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Abstract

This paper investigates the motion amplification brought
by latching control to a mechanical oscillator installed on
a wave activated body. This generic problem potentially
applies to a familly of wave energy devices already exist-
ing or under development today. Assuming the excitation
force being monochromatic, one can determine analyti-
cally the optimal latching duration. The analytical time
domain approach allows for highlighting specific nonlin-
ear features of such systems of oscillators as output pe-
riod doubling, tripling,... It is shown that latching control
applied to coupled power take off oscillators can be as ef-
ficient as it was demonstrated to be for simple oscillator
in these wave energy recovering systems.

1 Introduction.

Conceptually, a lot of different methods has been proposed
to extract power from the waves. One of them consists in
using the relative motion between floating bodies, and one
can say that it is one of the most promising today. In the
Pelamis device [12], the rotational relative motions be-
tween floating cylinders is used to produce high pressure
hydraulics, then electricity. In the sloped IPS buoy [11],
it is a coupled submerged body which provides the reac-
tion for floating body oscillation, whereas in the PS Frog
MKS5 [3] the coupled reaction providing body is located
inside the floating unit. As others researchers, we believe
that control is the key which could make one day wave
energy conversion economically viable, whatever the de-
vice considered. When the device is composed of a single
oscillator using the sea bottom as a reference — a point-
absorber —, the law for optimum control is known from the
early studies of Evans [6] and Falnes [2], but can not be
applied in random waves, being then anti-causal. In the

early eighties, Budal and Falnes proposed a sub-optimal
control method known as latching control [2], which was
further investigated in [7], [8], [1], for a single oscillator.
On his side, Korde [9] applied this method to devices us-
ing an in-board active reference, but exerting the latching
control on the power take off rather than on the motion
of the system. In [10], he considered continuous reactive
control to decide if the reaction providing body should be
located inside or outside the floating unit. Here, we will
expose a method that can be used to assess the benefit
which can be brought by applying latching control on the
relative motion of such a device.
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Figure 1: principle of the double oscilllator point absorber



2 General formulation.

Let’s consider a simplified generic wave energy converter
as described on figure (1). It is made of a positively buoy-
ant cylindrical hull of mass my, moored to the sea bottom
and restrained to move only in heave motion (measured
by x1). We assume all the other motions to be ideally
restricted. Inside this cylinder lies an additionnal mass
mg which can slide without friction along the vertical x
axis. Let xo be the displacement of mso appart from its
equilibrium position. When the system is excited by the
sea, both the cylinder and the internal mass are set into
motion, in such a way that the relative motion between
the two parts can be converted into energy by means of a
power-take-off (PTO). We will assume that the PTO can
be modelized by linear spring k2 and damper bs. Time-
domain equations of the motions are :

ma@ () +ma (@1(t) + 2(t)) = fea(t) — poo@(t)
- /0 1 (1)K (t — 7)dr — k121 ()
mo (il(t) + ig(t)) = —byly (t) — kQIQ(t)

where 1 is the added mass for the heave motion, K is
the impulse response function in heave mode, f., is the
excitation force due to incident and diffracted waves, k1
is the stiffness of the cylinder. Using Prony’s method [4],
one can approximate the kernel function K by a sum of
N pair of conjuguate complex variables I;. The value of
each I; is then given by a ordinary differential equation
I; = B, I; + a;iywhere (o, 8;) can be calculated using the
method described in [5]. The equation of the motion then
becomes a standard state equation:

(ml +ma + ﬂoo) I (t) + inQ(t) = fe:t(t)
N
— Z_Tl — klacl(t)

(m1 + mg) ig(t) + byig (t) + kgﬁg(l‘:) =0
ji — ,61[1 = 0(1@1 (1)

in which all the hydrodynamical radiation effects lie in
the added states I;. To help understanding, we will tem-
porarily consider a simplified system consisting only in
two coupled mechanical oscillators by skipping all the I;
terms in eq.(1) which degenerates into a damper. How-
ever, all the forthcoming calculations can be performed for
the initial global problem by simply re-introducing the hy-
drodynamic I; terms in eq.(1). Motion equations for the
coupled oscillators problem are :

mljél + mso (:zc1 + !EQ) = Fez(t) — k1$1 — blil (2)
mo (:zcl + !EQ) = —kgmg — ij:Q

From now on, we will consider monochromatic ex-

citation force. Let us define the state vector X =

[ T Ty X1 Lo ] .By inverting the mass matrix, we

get the the first order differential equation of the motion:

X = A.X + Bcos (wt + @) (3)

with :
0 0 1 0
0 0 0 1
A= _ w2 2 o
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0
0
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fez
_fem
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It is well known that the general solution of this equa-
tion (3) can be expressed in term of matrix exponentials.
Using the given initial condition X (¢t = ¢;) = X;., we get

X(t) = exp(A(t—1))Xi+ (4)

5 (Ie™(=t) — exp(A (t — t:)))
\ x (iwl — A) ' Bei(wtiteo)

2.1 Equations of the latched system.

Latching control consists in locking the x2 motion when
the velocity vanishes (at say ¢ = 0 the origin of time being
free up to now), and releasing it (at t = tg) after a certain
delay to be determined. In a previous paper [1] where the
present method was applied to a single oscillator (as if mq
were discarded, and the PTO in by instead of by and the
latching on the motion of mass m4), this manoeuvre was
shown to improve dramatically the response amplitude,
and consequently the extracted power. Let’s assume that,
at time ¢ = 0 (initial conditions), we lock the motion
zo of the internal mass relative to the external mass as
described above. During the latching period (0 < t < #g)
the equation of motions then degenerates into :

(m1 -+ mg) Iil = Fez(t) - klml - bl.’tl
) = 0

(5)
Under the same matrix form :
X = A" X+ B'.cos (wt + @) (6)

but now with :

0 0 1 0 0

N 0.0 0 0 0
= wi = f(‘l‘
1 0 19y O 147

0 0 0 0 0

Again the general solution is given by eq.(4), assuming
the initial condition X (¢ = 0) = Xj.

2.2 Calculating the optimal latching du-

ration.
Let’s assume that the excitation and the control has
started from t = —oo and that a periodic regime has been

reached. We assume that at ¢ = 0, the velocity &2 of the



mass meo vanishes. From this we get the initial condition

XO = X(t = 0) = [ 1,0 2,0 .7'31’0 0 ]T

The distance x5, between the two masses will be kept
constant during a duration ¢y to be determined. We as-
sume that the periodic motion is established, in such a
way that the system reach a final state Xy at ¢ = ¢; (with
Z2(t1) = 0) opposite of the initial condition. This implies
two conditions at ¢ = t;. First one is that X; = X(t =
t1) =—Xo=[ —x10 —w20 —d10 O ]T. The second
one requires that necessarily Fe,(t = t1) = —Fe(t = 0)
resulting in wt; = 7™ + 2km,with £ € N. From this we get
t1 = (2k +1)Z and we see that the ratio between the pe-
riod of the system response (say To.:) and the excitation
period (say Te,) is necessarily odd.

2.3 Equation of latching

By writing the state vector at t = ¢p, when the second
mass mo is released, and at ¢t = ¢;, we find that Xy must
be solution of

Xo = — (I 4 exp(AA). exp(A’to)) "
exp(AA) (I — exp(A'tg)e ko)
x (iwl — A ' B
+ (Ie™® — exp(AA))

X (iwl—A)"'B

ei (“’to +500)

xR

(7)
with A = ¢, — tg. Moreover we must have : A = (2k +
I —to, t1 = (2k + 1)Z. The last field of vector Xy
represents the velocity of mass msy. From the previous
conditions it should vanish, and this gives the equation of
latching delay.

So now let’s choose an integer value for k. We can
calculate for each value of ¢, all the possibilies for ¢y €
[0, (2k + 1)5] satisfying the equation of latching. For pe-
riodicity arguments, it is not necessary to seek for so-
lutions for values of ypgoutside the range [0,7]. Finally,
among all the solution couples (g, t9), we retain the only
one which maximizes the amplitude of the motion of the
second mass during the free motion period. Note that
the form of the equation (7), and therefore the solution
method, would have been absolutely identical if we had
made the calculation with the hydrodynamic terms I; in-

cluded.

3 Results

On figure (2,a), we have plotted the amplitude of the re-
sponse of the system, controlled or free. The parameters
are set to wy = 0.75 rad/s, we = 1.0 rad/s, n = 0.1,
fex = 1.0, £1 = €9 = 0.1. In this first calculation, we have
set k = 0, which means that the period of the response
Tour is equal to the response of the excitation force T,.
Results are globally the same as what we observed in the
case of a single mechanical oscillator : non trivial solutions
of the above latching problem can be found when the ex-
citation frequency is lower than the natural frequency (i.e.
wg) of the working mass (here mg) on which latching is
applied. The first (from top) two curves fig.3 show the
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Figure 2: Homochromatic (T,,: = 7T.,) response am-
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plitude and extracted power with and without control.
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amplification obtained in a time-domain simulation. On
the bottom plot, figure (2, b), where the absorbed power
is plotted, one can appreciate all the benefit brought by
latching control, and the large broadening of the band-
width. We made another calculation for the same choice
k =0, then T,,; = T,,, but now with ws < wy . Results
were quite disappointing: latching control still works for
w < ws , as we could anticipate, but it cover only a narrow
band in low frequency, and is globally unefficient in terms
of absorbed power. On figure (4), we have plotted results
corresponding to the case wy; < wy but now with k£ = 1,
which means that the period of the response is three times
the excitation period. (Tout = 3T¢.). A example of such
a behavior is plotted in fig.3,c. As in the case of a single
mechanical oscillator, one can see that the amplitude of
the motion is amplified whatever is the frequency, even for
w > ws , and the absorbed power is significantly improved,
except around the natural frequency ws. Period tripling
allows to improve the functionment of the system, even for
frequencies higher than the natural frequency of the work-
ing oscillator. However, the gain in terms of power is less
than in the case & = 0 when the frequency is lower than
wo. Applications of the present method including all the
hydrodynamic terms will be presented at the Workshop,
and explained in detail in a forthcoming paper.
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