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Summary
The paper considers the diffraction of incident surface water waves by a very large floating platform. The problem is solved for
the case of finite water depth. The platform is of finite draft and modeled by an elastic thin plate. We consider the half-plane
problem; the approach may be extended to the plates of other horizontal planform. The deflection of the plate is represented as the
series of the solutions with respect to draft; we present the first and second term. Each of these terms can be written as the series
of exponential functions. We obtain reduced wavenumbers and derive the sets of equations for corresponded wave amplitudes.
Results obtained for the plate of finite draft are compared to the results obtained with use of zero-thickness assumption.

Keywords: plate-water interaction, diffraction, incident waves, hydroelastic response, deflection, dispersion relation, integro-
differential equation, Green’s function, very large floating platform, finite draft, three-dimensional analysis.

Abbreviations: VLFP - very large floating platform, IDE - integro-differential equation.

1 Introduction
The plate-water interaction is an important subject of the hy-
drodynamics, widely studied during last years. A very de-
tailed literature survey for the hydroelastic analysis of VLFP
has been published recently by Watanabe et al. [1]. There
are several approaches used to describe the interaction between
VLFP and surface water waves. Usually, VLFP is modeled by
a thin elastic plate.

The solution for the case, when the plate thickness is as-
sumed to be zero, has been derived by authors, published in
[2] and presented at 17th IWWWFB. In this paper we study
the plate of finite thickness and draft.

2 Formulation
The semi-infinite plate of finite draft covers the part of the sur-
face of the water, which is assumed to be an ideal incompress-
ible fluid of finite and constant depth. The plate deflection is
generated by incoming surface waves propagated in positive x-
direction. The geometry and the coordinate system chosen are
shown in figure 1.

Parameters of the plate and characteristics of the material:
ρp - density, m - mass of unit area, D - flexural rigidity, hp

- thickness, d - draft. The mass per unit area is m = ρphp,
D is the flexural rigidity, expressed in terms of the Young’s
modulus E , Poisson’s ratio ν and the plate thickness hp, D =

Eh3

p/12(1−ν2).
The water and wave parameters: ρw - density, h - depth, λ

- wavelength, k0 - wavenumber, ω - wave frequency, A - wave
height. We take the zero angle of incidence β; transition from
the perpendicular waves case to the oblique waves case is not
difficult.

Further, D = D/ρwg, µ = mω2/ρwg are introduced struc-
tural parameters, constant as isotropic plate is considered; the
flexural rigidity and bending stiffness of the plate are constant.

The wave height A is smaller than the plate thickness hp.
Therefore, there is no cavity between wetted surface of the
plate and water surface.

With the usual assumptions of an ideal fluid and small
amplitudes, the velocity potential can be written in the form
Φ(x,y,z, t) = φ(x,y,z)e−iωt . The potential φ(x,y,z) is a solu-
tion of the Laplace equation in the fluid, −h < z < 0,

∆φ = 0, (1)
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Figure 1: definition sketch of the problem.

together with the boundary conditions on the free surface z = 0,
on the bottom z = −h, φz = 0, and on the floating plate wetted
surfaces, which are horizontal P (x > 0,z = −d) and vertical
VS (x = 0,−d < z < 0), see, e.g., [1].

Using the thin plate theory, we obtain the following expres-
sion for the total potential φ at the plate area

(

D∆2
−µ + 1

)

φz −Kφ = 0, (2)

where K = ω2/g. For the open water area, we have

φz −Kφ = 0. (3)

The potential of the undisturbed incident wave φinc is given by

φinc(x,z) =
coshk0(z+ h)

coshk0h

gA

iω
eik0x. (4)

For the water of finite depth, the wavenumber k0 is the only
real solution of the water dispersion relation

ki tanhkih = K. (5)

The wavelength of incoming waves is λ = 2π/k0. The diffrac-
tion potential, which equals φ−φinc, must satisfy the Sommer-
feld radiation condition at infinity.

The linearized free surface kinematic condition gives us the
following relation between the potential and deflection

φz(x,z) = −iωw(x). (6)

The free horizontal edge of the plate is free of vertical forces,
bending and twisting moments, and the free edge conditions at
y = 0 are

∂2w

∂x2
=

∂3w

∂x3
= 0, (7)

as the direction of the normal n coincides with the direction of
x-axis. The condition at the vertical surface of the plate edge
x = 0 has the form

φx = 0. (8)



3 Solution
With use of the thin plate theory and Green’s theorem we ob-
tain integral equation for the potential and, further, IDE for the
plate deflection. The key idea of our approach is adding of
a correction, which is dependent on draft, to our solution [2],
obtained with the zero-thickness assumption.

As in the case of zero draft [2], we write the deflection of
the plate of finite draft in the form

w(x) =
∞

∑
n=0

aneiκnx, (9)

where the amplitudes an and reduced wavenumber κn are un-
known. Each term of the series represents corresponded wave
mode. Due to the convergence of the series in (9) a finite num-
ber, M, of wave modes is taken into account. However, now
the amplitude is written as a power series with respect to small
value of the draft as follows

an = a
(0)
n + da

(1)
n + O(d2). (10)

To avoid secular behavior of the amplitudes, as in the PLK
method [4], we also expand the reduced wavenumber κn as
power series

κn = κ
(0)
n

(

1 + dκ
(1)
n

)

+ O(d2). (11)

Terms a
(0)
n , a

(1)
n and κ

(0)
n , κ

(1)
n of the corresponded series are of

zero and first draft orders respectively. The plate deflection (9)
may be rewritten as the sum of zero order draft solution (with
a correction term in the exponential function) and first order
draft solution

w(x) = w(0)(x)+ dw(1)(x), (12)

where w(q)(x), q = 0,1, has the form

w(q)(x) =
M

∑
n=0

a
(q)
n e

iκ
(0)
n

(

1+dκ
(1)
n

)

x
. (13)

For the case when thickness is assumed to be zero [2], the
deflection w(0∗)(x) is represented in the form

w(0∗)(x) =
M

∑
n=0

a
(0)
n eiκ

(0)
n x. (14)

We introduce the Green’s function for a source within the
fluid, and apply the Green’s theorem for the potential in open
water and plate areas. The total potential φ satisfies

2πφ = 2πφinc +
Z

VS

(

φ
∂G

∂n
−G

∂φ

∂n

)

dζ+
Z

P

(

φ
∂G

∂n
−G

∂φ

∂n

)

dξ.

(15)

The normal derivative of the potential, φn, for vertical surface,
as the normal coincides with x-axis, becomes φx, that equals 0
due to (8). For horizontal surface, whereas the normal coin-
cides with z-axis, the potential normal derivative becomes φz.
Thus, for the potential in the plate area the following approxi-
mate integral equation is derived

2πφ(x,−d) = 2πφinc
−dφ(0,0)

∂G(x,0;0,0)

∂ξ

+

∞
Z

0

(

φ(ξ,−d)
∂G(x,0;ξ,0)

∂ζ
−G(x,0;ξ,0)

∂φ(ξ,−d)

∂ζ

)

dξ

+2d

∞
Z

0

G(x,0;ξ,0)

(

∂2φ(ξ,−d)

∂ξ2
+ K

∂φ(ξ,−d)

∂ζ

)

dξ, (16)

where the two-dimensional Green’s function at the free surface
has the form, see [3],

G(x,0;ξ,0) = −

∞
Z

0

coshkh

k sinhkh−K coshkh
eik(x−ξ) dk. (17)

Using the relations between the potential φ(x,−d) and its
derivatives and the deflection w(x), we obtain the following
integro-differential equation for the plate deflection

{

D
∂4

∂x4
−µ + 1

}

w(x)

−

K

2π

∞
Z

0

G(x,0;ξ,0)

{

D
∂4

∂ξ4
−µ

}

w(ξ)dξ = F0, (18)

where the function F0 contains terms from the first and third
lines in the right-hand side of (16). If we insert expressions
for the deflection (9) and Green’s function (17) into IDE (18),
keeping an and κn in the general forms, the following equation
is derived

M

∑
n=0

(

Dκ4

n −µ + 1
)

aneiκnx +
K

2π

∞
Z

0

M

∑
n=0

(

Dκ4

n −µ
)

aneiκnξ

×

∞
Z

0

coshkh

k sinhkh−K coshkh
eik(x−ξ) dk dξ = F0. (19)

Next, the integration with respect to ξ has to be done. The
k-integral can be solved by means of the residues at the poles
k = κn and k = ki of the complex plane

M

∑
n=0

(

Dκ4

n −µ + 1
)

aneiκnx + K
M

∑
n=0

(

Dκ4

n −µ
)

an

×

(

eiκnx

κn tanhκnh−K
+ ∑

i=0

kie
ikix

(κn − ki)Ki

)

= F0, (20)

where the introduced functions Ki for i = 0, ...,M−2 are

Ki = K(1−Kh)+ k2

i h. (21)

Then we rewrite the amplitudes an in the form (10) and
obtain the following extended expression

M

∑
n=0

(

Dκ4

n −µ + 1
)

(

a
(0)
n + da

(1)
n

)

eiκnx

+K
M

∑
n=0

(

Dκ4

n −µ
)

(

a
(0)
n + da

(1)
n

) eiκnx

κn tanhκnh−K
= F, (22)

where the function F is the sum of the original functon F0 plus
the contribution of the poles k = ki in (22):

F = Aeik0x
−K

M

∑
n=0

(

Dκ4

n −µ
)

(

a
(0)
n + da

(1)
n

)M−2

∑
i=0

kie
ikix

(κn − ki)Ki

+d
M

∑
n=0

(

Dκ4

n −µ + 1
)

(

a
(0)
n + da

(1)
n

)M−2

∑
i=0

k2
i eikix

Ki

+2d
M

∑
n=0

[(

Dκ4

n −µ + 1
)

κ2

n −K2
]

(

a
(0)
n + da

(1)
n

)

×

(

M−2

∑
i=0

kie
ikix

(κn − ki)Ki

+
eiκnx

κn tanhκnh−K

)

. (23)



4 Zero draft order
Now we distinguish terms of zero draft order, that allows us to

find κ
(0)
n and, later, a

(0)
n . Analyzing the left-hand side in (22)

and collecting O(d0) terms, we obtain

M

∑
n=0

F (κ
(0)
n )a

(0)
n eiκnx =

Aeik0x
−K

M

∑
n=0

(

Dκ4

n −µ
)

a
(0)
n

M−2

∑
i=0

kie
ikix

(κn − ki)Ki

, (24)

where the function F (κn) has the form

F (κn) =

(

Dκ4
n −µ + 1

)

κn tanhκnh−K

κn tanhκnh−K
. (25)

In the nominator of the function F (κn) we have the dispersion
relation in the plate region of zero draft order, which is

(

Dκ
(0)4

n −µ + 1
)

κ
(0)
n tanhκ

(0)
n h = K. (26)

Making M the truncation parameter of the problem, we take

into account M + 1 roots κ
(0)
n of the plate dispersion relation

(26) and M−1 roots ki of the water dispersion relation (5).

Then, the set of equations for the amplitudes a
(0)
n may

be obtained if we consider the coefficients of the exponential
function eikix. The obtained M−1 equations are

M

∑
n=0

(

Dκ
(0)4

n −µ
) kiKa

(0)
n

Ki

(

κ
(0)
n − ki

) = Ai, (27)

where i = 0, ...,M−2, and A0 = −A, Ai = 0 for i > 0. The rest
of equations are obtained from the free edge conditions (7):

M

∑
n=0

κ
(0)2

n a
(0)
n = 0,

M

∑
n=0

κ
(0)3

n a
(0)
n = 0. (28)

The set for a
(0)
n consists of M + 1 equations (27)-(28), hav-

ing exactly the same form with one derived for the case of
zero-thickness assumption in [2]. In such a way, the deflec-

tion function w(0∗)(x) can be computed by formula (14).

5 First draft order
Next, we consider the terms of first draft order in the extended
IDE (22). Terms, containig κn − ki in the denominator in (23),
result in extra terms of O(d1). The first draft order equation
becomes

M

∑
n=0

(

F (κ
(0)
n )a

(1)
n +

∂F (κ
(0)
n )

∂κn

κ
(0)
n κ

(1)
n a

(0)
n

)

eiκnx

κn tanhκnh−K
=

−K
M

∑
n=0

(

Dκ
(0)4

n −µ
)M−2

∑
i=0

eikix

(

κ
(0)
n − ki

)

Ki



a
(1)
n −

κ
(0)
n κ

(1)
n a

(0)
n

(

κ
(0)
n − ki

)





+
M

∑
n=0

(

Dκ
(0)4

n −µ + 1
)M−2

∑
i=0

k2
i eikix

Ki

a
(0)
n

+2
M

∑
n=0

[(

Dκ
(0)4

n −µ + 1
)

κ
(0)2

n −K2

]M−2

∑
i=0

kie
ikixa

(0)
n

(

κ
(0)
n − ki

)

Ki

+2
M

∑
n=0

[(

Dκ
(0)4

n −µ + 1
)

κ
(0)2

n −K2

] eiκnxa
(0)
n

κn tanhκnh−K
. (29)

Function F (κn), having the form (25), has been rewritten as

F (κn) = F (κ
(0)
n )+ d

∂F (κ
(0)
n )

∂κn

κ
(0)
n κ

(1)
n + O(d2). (30)

Doing some operations and considering the coefficients of
eiκnx, the following relation is obtained for reduced wavenum-

bers of first draft order κ
(1)
n

κ
(1)
n =

2
[(

Dκ
(0)4

n −µ + 1
)

κ
(0)2

n −K2

]

κ
(0)
n Q (κ

(0)
n )

, (31)

Q (κ
(0)
n ) =

(

Dκ
(0)4

n −µ + 1
)

κ
(0)
n h

+
(

5Dκ
(0)4

n −µ + 1
)

tanhκ
(0)
n h−Kh tanhκ

(0)
n h. (32)

It is seen from (31), that κ
(1)
n ∼ O(2/h), and also that for real-

istic values of the draft and wavelength dκ
(1)
n < 1, that one can

expect. The nature of κ
(1)
n is the same with corresponded κ

(0)
n

for n = 0,1,2: they are purely real when n = 0, and are com-

plex roots when n = 1,2. But for n > 2 κ
(1)
n are purely real,

while κ
(0)
n are purely imaginary roots.

Knowing κ
(1)
n and a

(0)
n , the deflection function w(0) is com-

puted by formula (13). Then, the amplitudes a
(1)
n may be found

with use of (29), a
(0)
n , κ

(0)
n and κ

(1)
n . The equations to determine

a
(1)
n have the following form for i = 0, ...,M−2

K
M

∑
n=0

(

Dκ
(0)4

n −µ
) kie

ikix

(

κ
(0)
n − ki

)

Ki

a
(1)
n

= K
M

∑
n=0

(

Dκ
(0)4

n −µ
) κ

(0)
n κ

(1)
n kie

ikix

(

κ
(0)
n − ki

)2

Ki

a
(0)
n

+
M

∑
n=0

(

Dκ
(0)4

n −µ + 1
) k2

i eikix

Ki

a
(0)
n

+2
M

∑
n=0

[(

Dκ
(0)4

n −µ + 1
)

κ
(0)2

n −K2

] kie
ikixa

(0)
n

(

κ
(0)
n − ki

)

Ki

, (33)

and are supplemented by the free edge conditions

M

∑
n=0

κ
(0)2

n a
(1)
n = −2

M

∑
n=0

κ
(0)2

n κ
(1)
n a

(0)
n , (34)

M

∑
n=0

κ
(0)3

n a
(1)
n = −3

M

∑
n=0

κ
(0)3

n κ
(1)
n a

(0)
n . (35)

We may note, that coefficients of the amplitudes a
(0)
n and a

(1)
n

in the corresponded sets of M + 1 equations are the same. The
set of equations (33)-(35) of first draft order allows us to find

the amplitudes a
(1)
n and, then, the deflection term w(1). Hence,

the total deflection can be computed by formula (9).

6 Results & discussion
The number of the roots κ

(0)
n and, correspondingly, κ

(1)
n , which

are taken into account, is M = 30. It provides sufficient accu-
racy. We take Poisson’s ratio ν = 0.25, ratio m/ρw = 0.25 m,
and wave height A = 1 m as constant. Hence, results shown
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Figure 2: w, w(0∗), w(0), w(1); for h = 10 m, D = 107
m
4, l = 1000 m,
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Figure 3: w, w(0∗), w(0), w(1); as in figure 2, for h = 100 m.

are for the real part of the deflection, normalized by the wave
height. Results for w are plotted against x/l, where l is the
length of the plate part considered. Four curves in figures 2-4
represent: the total deflection w, deflection for the case of zero

draft (zero-thickness assumption) w(0∗), the deflection terms of

zero w(0) and first w(1) draft orders.

In figures 2-3 results are shown for the realistic values of
the plate rigidity (as for VLFP) for shallow and rather deep
water. In figure 4 results are plotted for low rigidity (an ice

field). We may see the shift, when w(0∗) and w(0) are compared;
the direction of shift may be different for shallow and deep
water (to the left and to the right respectively).

Results for the total deflection w for different values of the
draft are given in figure 5. The difference between the total

deflection w for finite draft and the deflection function w(0∗),
and direction and value of the shift (w(0) and w(0∗)) is highly
dependent on the draft value. The draft has sufficient influence
on the results, especially for the plate of low rigidity. For real-
istic values of the plate rigidity and draft (as for VLFP), water
depth and wavelength, the influence is not so large though.

7 Conclusions & summary

The problem of the diffraction of surface water waves on the
floating flexible plate of finite draft is solved. The analytical
and numerical study for the plate hydroelastic behavior is pre-
sented. The plate deflection is represented as the series of the
solutions with respect to the draft. The problem is solved with
use of the thin plate theory, Green’s theorem and derived IDE.
The correction, appeared due to nonzero thickness, is studied.
Other unknown parameters, such as the free surface elevation,
reflection and transmission coeficients may be studied as well.
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m
4, l = 300 m,

λ = 60 m, d = 1 m.

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  0.2  0.4  0.6  0.8

P
S

fra
g

rep
la

cem
en

tsw
x/

lw

w
(0
∗)

w
(0)

w
(1)

w

x/l

d = 0 m

d = 0.5 m

d = 1 m

d = 2 m

Figure 5: plate deflection w; for different draft values and h = 100 m,

D = 107
m
4, l = 1000 m, λ = 100 m.

For the case of shallow water this problem may be solved with
use of the Stoker approximation theory.

This is the new extension of our method, which has pre-
viously been applied to the plates of (assumed) zero thick-
ness. The approach presented may be rather straightforward
extended to the case of oblique incident waves or to the strip
of finite width and infinite length. Also, the approach can be
extended to other horizontal planforms of the plate: circular
and ring-shaped, quarter-infinite, rectangular finite, etc.

More details, information and results will be presented at
the Workshop.
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