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1 Introduction

Second-order wave loads are significant for various types of offshore structures. Many analytical
studies have been performed, based on the assumption of potential flow and using perturbation
expansions including all contributions of second order. Most results are for monochromatic in-
cident waves, where the second-order effects include a second-harmonic and a time-independent
component. Additional biharmonic effects must be considered in a spectrum, including both
sums and differences of the first-order frequencies. Analytical studies are restricted either to
two dimensions or to axisymmetric three-dimensional structures. Several numerical codes have
been developed based on the panel method, to predict the second-order wave effects on more
general structures in three dimensions.

When the incident waves are short, or the frequency ω is large, the first-order wave field is
confined to a thin layer near the free surface. The first-order loads are asymptotically small,
and can be analyzed by the method of geometric optics or ray theory. Little is known regarding
second-order effects in this regime except for a few specific bodies. In general the second-order
loads do not tend to zero (when normalized in the usual manner based on the square of the
incident-wave amplitude). The simplest example is the oscillatory ‘runup’ at the waterline,
which causes a concentrated pressure force equal to 1

2
ρgζ2, where ρ is the fluid density, g is the

gravitational acceleration, and ζ is the first-order local free-surface elevation.
The pressure due to the second-order component of the potential is a more complicated cause

of second-harmonic loads. Unlike the first-order diffraction field, the second-order potential
persists at large depths below the free surface even when the first-order waves are very short
(Newman, 1990). For specific bodies it has been shown that the second-harmonic force increases
without bound, in proportion to the wavenumber ω2/g in two dimensions (Wu & Eatock Taylor,
1989; McIver, 1994) and in proportion to the frequency ω for a vertical cylinder in three
dimensions (Newman, 1996). Less is known regarding the behavior of the sum- and difference-
frequency components in short biharmonic waves.

Our objective here is to derive asymptotic results for the second-order potential and loads
in the short-wavelength regime. A simplified problem is considered, where waves are incident
upon a two-dimensional (cylindrical) body which intersects the free surface. Both oblique and
normal incidence are considered. For three-dimensional applications the results can be applied
to elongated vessels using a strip-theory synthesis, and also to compact bodies where the radius
of curvature along the waterline is large compared to the wavelength. Since the body motions
are small in short waves, it is reasonable to consider only the diffraction problem where the
body is fixed in position. The fluid depth is assumed to be infinite.



2 Formulation

The horizontal coordinates x, y are in the plane of the free surface and the z-axis is positive
upward. The body is cylindrical with its generators parallel to the y-axis. The sides intersect
the free surface vertically along the waterlines x = ±b. Two incident waves (i = 1, 2) are
considered, with complex amplitudes Ai, frequencies ωi, wavenumbers ki = ω2

i /g and incidence
angles βi relative to the positive x-axis. The (x, y) components of the wavenumber vector are
ui = ki cos βi and vi = ki sinβi. Subscripts are used to denote the frequency components, and
superscripts for the perturbation orders.

The total potential, correct to second order, is φ = φ(1) + φ(2). The first- and second-order
potentials are given by the real parts of
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The incident waves propagate toward the body in the domain x < 0, thus |βi| < π/2 and
ui > 0. Since the wavelength is short relative to the dimensions of the body, complete reflection
is assumed for the first-order solution at the waterline x = −b. Thus, in the domain x ≤ −b,

φi '
2g

ωi
cos (ui(x + b)) ekiz+iuib−iviy . (3)

The first-order solution vanishes to leading order for x ≥ b and in the region below the body.

3 The second-order free-surface condition

The potential φ(2) satisfies the homogeneous condition φ(2)
n = 0 on the submerged surface of

the body, and the inhomogeneous free-surface condition

φ
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tt + gφ(2)

z = − ∂

∂t

(
∇φ(1)

)2
on z = 0 and |x| > b . (4)

The right-hand side of (4) is simplified since the first-order potentials are of the form (3).
Since the second-harmonic terms involving e2iωit can be recovered from the sum-frequency

term as special cases, we consider only the last two terms in (2). After substituting (3) in (4)
and performing some reduction the second-order free-surface condition takes the form
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]
. (5)

Here H(−x) is the Heaviside unit function, which vanishes for x > 0. In general there are
two components of the forcing function on the right side of (5) which are oscillatory in the
x-direction with the wavenumbers u1 ± u2. These two wavenumbers are present for both the
sum- and difference-frequency cases. In special cases, where the factor (k1k2∓v1v2−u1u2) = 0,
only one component exists with the ‘slow’ wavenumber u1 − u2. This follows in all cases of
normal incidence, where vi = 0 and ui = ki, and also for the sum-frequency case in oblique
monochromatic waves. The slow component is particularly important when u1 − u2 → 0 since
the forcing is nearly constant, extending to infinity, and this results in a second-order solution
which persists to large depths in the fluid.



4 Particular solutions of the free-surface condition

Solutions of the free-surface condition (5) can be decomposed into components which are solu-
tions of

−νϕ + ϕz = H(−x)e−iux−ivy on z = 0 . (6)

Particular solutions which satisfy (6) can be combined so that the remaining components of
the second-order potential satisfy either homogeneous boundary conditions on the free surface
or inhomogeneous conditions where the forcing functions on the right-hand-side tend to zero
away from the body.

Solutions of (6) can be constructed from the potential for a pressure distribution on the free
surface (Wehausen & Laitone, 1960, equation 21.3). The forcing function on the right side of
(6) is first restricted to a finite rectangular domain (−M < x < 0, −M < y < +M), and the
limit as M → ∞ is evaluated. This gives the solution in the form

ϕ =
i

2π
e−ivy

∫

C

ekz+irx dr

(k − ν)(r + u)
, (7)

where k =
√

r2 + v2 and C is an appropriate contour of integration between ∓∞. The pole
at r = −u is associated with the ‘locked waves’, which propagate with the same phase as
the forcing function in (6). Defining the contour C to pass above this pole ensures that the
integration from −M to 0 tends to a finite limit as M → ∞. Two other poles are associated
with the ‘free waves’, where k = ν and r = ±

√
ν2 − v2 ≡ ±µ. The radiation condition requires

that Im(k) > 0, and thus when µ is real the contour C passes above the pole r = +µ and below
the pole r = −µ. Except for these three poles, and branch points at r = ±iv associated with
the function k =

√
r2 + v2, the integrand of (7) is analytic in the complex r-plane. Branch cuts

are established extending from ±i|v| to ±i∞ on the imaginary axes, and k is continued into
the cut plane with the convention that k > 0 on the real axis.

For x >
< 0 the contour C in (7) can be replaced by a contour around the upper or lower

branch cut, respectively. It follows from residue theory that
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where the sign (±) corresponds to the domain x >
< 0 and
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Here κ =
√

u2 + v2 and w =
√

t2 − v2. When u = 0 and v = 0, corresponding to the limit
where the oscillatory part of the forcing function on the right side of (6) is constant, (9) reduces
to the integral representation derived in a different manner by Miao & Liu (1989, equation 14).

For large values of |νx| and |κx| I tends to zero, exponentially for |v| > 0 and in proportion
to |x|−2 when v = 0. In these cases the first term in (8) is evanescent. However when κ =√

u2 + v2 = 0, the combination of the first and third terms is vortex-like in the far field, as
shown in the next Section. This is the dominant cause of the second-order force in short
wavelengths. The second term in (8) represents radiating free waves on both sides of x = 0.
The locked waves represented by the third term exist only in x < 0.

For the sum-frequency case, where ν = (ω1 + ω2)
2/g, it is easy to show that ν2 > (u2 + v2);

thus (µ2−u2) = (ν2−κ2) > 0, and µ is real. For the difference-frequency case, ν = (ω1−ω2)
2/g,

regimes exist where ν2 < v2 and µ is imaginary. In these regimes the poles at r = ±µ are on
the imaginary axis, and the first exponential in (8) is replaced by eνz−|µx|; thus the free waves
are trapped, with exponential attenuation in both the ±x-directions.



5 Normal incidence

For normal incidence, where vi = 0 and ui = ki,

I(u) =
i

ν2 − u2

{
(ν − u)

[
eiνζ∗E1(iνζ∗) − e−iuζ∗E1(−iuζ∗)

]

−(ν + u)
[
e−iνζE1(−iνζ) − e−iuζE1(−iuζ)

]}
. (10)

Here E1 denotes the exponential integral and ζ = |x| + iz. For monochromatic waves |u| =
|u1 − u2| → 0, and the limiting value of (8) is

ϕ(0) = −π − 2θ

2πν
+

sgn(x)

2πiν

{
e−iνζE1(−iνζ) − eiνζ∗E1(iνζ∗)

}
− sgn(x)

ν
eνz−iν|x| , (11)

where θ = tan−1(x/|z|).
An interesting connection exists between the particular solution (11) and the ‘line vortex

potential’ λ derived by McIver (1994, equation 24). Both are harmonic functions which satisfy
the same free-surface condition, and thus they differ by a homogeneous solution of the free-
surface condition. Using relations given by Wehausen & Laitone (1960, equations 13.28-31), it
can be shown that (11) is equivalent to the potential of a point vortex at x = 0, z = 0, and the
difference between (11) and McIver’s λ is a horizontal dipole at the same point.

6 Applications

Results will be shown comparing the second-order forces obtained from these approximate
solutions with computations for three-dimensional bodies carried out using the second-order
extension of the panel code WAMIT. In some cases the agreement is sufficiently good to provide
a useful quantitative estimate. In other cases the practical value of the approximation is only
qualitative.
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