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1. Introduction

It is difficult not to be impressed by the sheer range
of Touviah Miloh’s research output, and it is all the
more remarkable that he has found the time to become
a regular contributor to the Water Wave Workshops
over many years. Each of his contributions is char-
acterized by the application of powerful mathematical
techniques coupled with a keen sense of the underly-
ing physics of the problem under consideration. In the
spirit of this approach, this paper offers a review of
some of the mathematical techniques which have been
employed to tackle a variety of classical linear water-
wave problems involving fixed or floating structures,
and which have provided analytical or semi-analytical
solutions capable of useful physical interpretation. It
is appropriate at this point to refer to the excellent
monograph on the same topic by Chris Linton and Phil
McIver (2001) and there is inevitably some overlap in
choice of problems and techniques. My choice is a per-
sonal one reflecting my own interests and I would like
to apologize in advance to those colleagues whose work
is not mentioned in what follows which is primarily
based on contributions from descendants of the Ursell
school which have been so prominent at these Work-
shops from their inception.
We shall primarily be concerned with the effect of a
plane wave incident upon a fixed or floating structure
and we shall be using the classical linearized equations
for water waves. This implies the existence of a veloc-
ity potential Φ(x, y, z, t) in the fluid region 0 < y < h,
−∞ < x, z < ∞ excluding any bodies, in terms
of Cartesian coordinates with y measured vertically
downwards in keeping with the Ursell notation. We
shall be concerned with possible time harmonic solu-
tions of radian frequency ω so that we seek a solution
φ(x, y, z) where

Φ(x, y, z, t) = <{φ(x, y, z)e−iωt}. (1)

∇2φ = 0, 0 < y < h, −∞ < x, z <∞, (2)

φy = 0, y = h, −∞ < x, z <∞, (3)

Kφ+ φy = 0, y = 0, (4)

where K = ω2/g. On the surface of a rigid body in the
fluid we have

φn = 0. (5)

In most of the cases that we shall consider the body will
be a cylinder of infinite extent in the z direction so that

for an incident plane wave having crests parallel to the
cylinder, the z variation in the solution is constant and
may be ignored. A further simplification will be the
assumption of infinite depth of water. It now follows
that

φ ∼ φ0(e−iKx−Ky +ReiKx−Ky), x→ +∞ (6)

φ ∼ φ0Te
−iKx−Ky, x→ −∞. (7)

The solution of these equations for one or more bodies
of arbitrary shape, either fixed or making small time-
harmonic oscillations, can always be treated numeri-
cally in both two or three dimensions, in finite depth
or deep water, by integral equation methods using an
appropriate Green function, and powerful commercial
programmes exist for just this purpose. Much space in
these Workshops has been used, and rightly so, to im-
prove and assess these numerical schemes in response
to commercial need as much as intellectual challenge. I
shall not consider this body of work here but will con-
centrate instead on some of the ingenious mathemat-
ical techniques which have been employed to extract
explicit solutions to the governing equations for simple
geometries, or which have produced accurate approxi-
mate solutions thereby providing a deeper understand-
ing of the problems considered.

2. Reduction Methods and Complex
Function Theory

The first non-trivial result for vertical boundaries is
the classical explicit result of Havelock (1929) who de-
termined the potential everywhere in x > 0 due to a
given small time-harmonic oscillation of the boundary
x = 0. His explicit solution is

φ(x, y) =−
∫ ∞

0

F (k)
K sin ky − k cos ky

k(K2 + k2)
e−kxdk

−2
∫ ∞

0

U(y)e−Kydy (8)

satisfying
φx = U(y), x = 0 (9)

where U(y) is given and with F (k) given by

F (k) = 2π−1

∫ ∞

0

U(y)(K sin ky − k cos ky)dy. (10)



Although not entirely clear from his paper, Havelock
implicitly uses the reduction method since his method
is equivalent to introducing Φ defined by

Ψ = Kφ+ φy (11)

to reduce the problem to one solvable for Ψ by Fourier
Sine Transforms and then integrating (11) to recover φ.

The case of a barrier extending a finite distance a
into the fluid is much more difficult but Ursell (1947)
utilized the Havelock solution above to obtain an ex-
plicit expression for the potential everywhere in the
fluid and to determine R as an explicit function of Ka.
In the course of his analysis he made use of the re-
duction method in applying the operator K + ∂/∂y to
simplify a certain integral equation which arose in the
analysis. His full explicit solution satisfying ∂φ/∂x = 0
on x = 0, 0 < y < a, is

φ = φ0e
−iKx−Ky + ψ(x, y) (12)

where
φ0 = πI1(Ka) + iK1(Ka) (13)

and

ψ(x, y) = πI1(Ka)eiKx−Ky +∫ ∞

0

k cos ky −K sin ky
k2 +K2

J1(ka)e−kxdk (14)

for x > 0 where ψ(−x, y) = −ψ(x, y) determines the
solution in x < 0. Here J1, I1,K1 are Bessel functions.
It follows that R = πI1(Ka)/(πI1(Ka) +K1(Ka)).

The reason that the reduction method works for
vertical barrier problems follows from considering
a complex-potential formulation of two-dimensional
problems in deep water where φ is the real part of
an analytic function w(z) of the complex variable z =
x + iy. Thus the function W (z) = dw/dz − iKw is
real on y = 0, its real part is constant on vertical
fixed boundaries and it vanishes for large |z|. Thus
for the Ursell problem it is easily shown thatW (z) =
z/(z2 + a2)−1/2 − 1 and w and hence φ are recovered
by integration and application of conditions at infinity.
W can be found for any arrangement of vertical barri-
ers but the details soon become complicated. See for
example, Evans (1970), Porter (1974) and Mei (1966).

In finite depth, complex variable methods do not
provide explicit solutions, but there is one notable ex-
ception due to Roseau who was concerned with deter-
mining R and T for the case of a wave incident in finite
water depth over a bottom topography varying mono-
tonically from one constant value at one infinity to a
different one at the other infinity. He first transformed
the original domain to an infinite strip at the cost of an
x−dependence showing up in the wavenumber K in the
free-surface condition. He then showed that the new
boundary-value problem in the uniform strip could be
solved explicitly for a particular wide class of topogra-
phies.The success of his method depends on being able
to reduce the problem to the solution of a two-term lin-
ear functional difference equation which allows an ex-
plicit solution. Roseau’s paper, which was published in

French in 1960 but can be found in English translation
in his book (1976), is a real tour de force and remains
the only explicit solution for the propagation of waves
over a variable bottom. Earlier work at the Courant
Institute by John, Peters and others, used both reduc-
tion methods and complex analysis to obtain functional
difference equations for a variety of uniform sloping
beach problems, and references can be found in the
book by Stoker (1957) and the major review article
by Wehausen & Laitone (1960). Further major sim-
plifications of solutions to sloping beach problems can
be found in a series of papers by Ehrenmark.(See for
example 1998)

3. Complementary Variational and
Galerkin Methods

The assumption of oblique incidence for infinitely
long cylinders leads to a problem for a potential φ(x, y)
satisfying the modified Helmholtz equation

φxx + φyy − k2φ = 0 (15)

which pre-empts the use of analytic function theory.
A useful real variable approach to problems involving
oblique waves incident upon fixed rectangular bound-
aries in finite water depth is to match eigenfunction
expansions in different regions across the common in-
terval containing a vertical boundary. Thus for the
Ursell barrier problem this can be done in two dif-
ferent ways providing singular integral equations for
either the unknown horizontal velocity u of the fluid
under the barrier, or the jump in potential p across it.
In operator notation we have Ku = ψ(y), y ∈  Lg and
(u, ψ) = A, orMp = ψ(y), y ∈  Lb with (p, ψ) = A−1.
Here K and M are linear integral operators and A is
a real constant related to the complex reflection coeffi-
cient R for the problem. A Galerkin approximation u
to u or p to p provides lower and upper bounds for A
such that

Al = (u, ψ) ≤ A ≤ (p, ψ) = Au (16)

The success of these complementary approximations
depends on a good choice of trial functions in the
Galerkin approximation. Porter and Evans (1995)
were able to achieve high accuracy using a small num-
ber of expansion terms for a variety of barrier prob-
lems by choosing functions which reflected the physi-
cal behaviour at the ends of the barriers.In deep water
Evans & Morris (1972) ,used a one-term approximation
consisting of the Ursell explicit solution for normally-
incident waves on a single barrier to obtain accurate
complementary bounds on the reflection coefficient for
an obliqely-incident wave on a single barrier or on a
pair of parallel vertical barriers. This latter problem
in normally-incident waves has been solved analytically
by Levine and Rodemich (1958) but the solution is too
complicated to be of much use. In contrast the comple-
mentary variational approach enables us to show that a
pair of vertical barriers is capable of completely reflect-
ing an incident wave at certain frequencies and spac-
ing, a result confirmed later by Newman (1974) using



matched asymptotic expansions for closely-spaced bar-
riers. This result led to the speculation that two pairs
of such barriers, sufficiently widely spaced could sup-
port a trapped wave between them, providing an ex-
ample of non-uniqueness of the two-dimensional water
wave problem. Thirty years on this was confirmed us-
ing the accurate Galerkin method by Kuznetsov et al
(2001) and extended to three dimensions by Shipway
and Evans (2003) who showed numerically that a wave
motion could be trapped between a pair of partially
immersed concentric thin shells. See Section (6.)

4. Multipole Methods and Wave-free
Potentials

We are indebted to Fritz Ursell for introducing a
powerful new technique over fifty years ago for solving
problems of radiation and scattering of small amplitude
water waves by bodies of circular cross-section which
has been exploited in a wide range of related problems
since that time. In his third published paper (Ursell
1949) he considered the waves radiated by the heaving
of a two-dimensional half-immersed oscillating circu-
lar cylinder centred at the origin. He constructed the
solution by expanding in terms of a set of harmonic
wave-free potentials

Φm(x, y) =
cos 2mθ
r2m

+
K cos(2m− 1)θ
(2m− 1)r2m−1

(17)

each of which satisfied the free surface condition (4)
were symmetric about x = 0 and which vanished at
large distances. To achieve a wave field at infinity he
added to the expansion a wave source at the origin and
by applying the final condition φr = U cos θ on r = a
he obtained an infinite system of equations for the un-
known coefficients in the expansion which he showed
was convergent. An alternative approach, which he
adopted in a later paper on the fully submerged circu-
lar cylinder would have been to construct a set of mul-
tipoles or higher-order singularities at the origin, since
it is easy to show that a symmetric multipole of order n
can be reduced to a combination of wave-free potentials
and a wave source. The many subsequent approaches
to radiation and scattering problems by circular cylin-
ders have chosen to use expansions in terms of multi-
poles. The use of both symmetric and antisymmetric
multipoles to solve for the scattering of a plane wave by
a submerged circular cylinder led Ursell(1950) to a re-
markable result, namely that the reflection coefficient
R was identically zero for all incident wave frequencies,
all cylinder radii and all depths of submergence. The
phenomenon of zero reflection is not new; it arises in
the scattering by any pair of surface obstacles includ-
ing thin barriers (Evans and Morris,1972) at discrete
frequencies and geometries. But only for the circular
cylinder in deep water is it zero for all values of two in-
dependent parameters. The surprises do not end there.
Ogilvie (1963) showed that the waves radiated by such
a cylinder in unit heave or sway motion were equal in
amplitude and π/2 out of phase from which it follows

that a submerged cylinder making small circular mo-
tions radiates waves in one direction only along the free
surface. A time-reversal argument now shows that it
is possible for such a cylinder to completely absorb all
the incident wave energy in a plane wave. The con-
ditions under which this occurs were determined and
confirmed experimentally by Evans et al (1979) and
formed the basis for the Bristol Cylinder wave energy
device.(Clare et al 1982)
Multipole potentials have also been used to solve radi-
ation and scattering problems for a bottom -mounted
vertical circular cylinder on the centre-plane of a nar-
row long wave tank. The governing equation is now the
Helmholtz equation in two dimensions once the depth
dependence has been extracted and the equations are
the same as for an acoustic problem with a ‘hard’ con-
dition on the side walls. The fundamental singularity of
order n for the Helmholtz equation is H(1)

n (kr)einθ. We
can modify this free-space potential to correct for the
Neumann conditions on the walls to obtain multipole
potentials which can be used as expansion functions
for either radiation or scattering problems for cylin-
ders in narrow tanks. Such an approach is superior to a
method based on successive images in the walls where
any truncation scheme will fail to model the correct
plane wave field at sufficiently large distances down the
tank. In the multipole method, for kd < π/2, where
2d is the tank width, each multipole describes a plane
wave at large distances. For kd > π/2, all multipoles
vanish down the tank and Callan et al(1992)were able
to prove that in this case there existed a trapped mode
having a unique wavenumber kd for small a/d where
a is the cylinder radius, and showed numerically that
such a mode existed for all a/d ≤ 1. This discovery
played a key role in understanding the large exciting
forces on cylinders near the centre of a large linear ar-
ray of identical cylinders predicted using a powerful
numerical code, by Maniar & Newman (1997).

5. Wiener-Hopf and Residue Calculus
techniques

The Wiener-Hopf technique is an ingenious method
of obtaining explicit analytic solutions to integral equa-
tions with convolution-type kernels on a semi-infinite
range, or boundary-value problems in a uniform strip
or half-plane in which, on one boundary, different con-
ditions are to be satisfied on each half-line. The classi-
cal prototype problem is that first solved by Sommer-
feld for the scattering of a two-dimensional acoustic
wave by a rigid half-plane. In the water wave con-
text it has been used to determine the scattering of
waves by a flexible ice sheet (Evans & Davies,1969),
a problem which was re-visited recently by Balmforth
& Craster(1999), Tkacheva (2001), and Chung & Fox
(2002). Again, Evans (1972), extending the work of
Heins (1950), showed how the method could be used
to construct a source function in a strip containing a
submerged plane, thereby providing the fundamental
tool needed for a numerical treatment of the scattering
of waves by a change in bottom topography from one



constant value to another different value.
Less well-known is the residue calculus method first
given prominence in an electromagnetic context by
Mittra & Lee (1971) It also provides explicit solutions
to mixed boundary-value problems in a strip using an
entirely different approach from the Wiener-Hopf tech-
nique. Here, matching of eigen-function expansions
in each half strip results in a first-kind infinite sys-
tem of equations which can be expressed as the residue
contributions from some of the poles of the integrand
of a certain complex meromorphic function integrated
around a sequence of increasingly large contours. Un-
like the Wiener-Hopf technique, the method cannot
handle half-plane problems but is more suited to prob-
lems in which one of the boundary conditions applies
over a finite interval when it is possible to obtain a
rapidly convergent solution by perturbing about the
semi-infinite solution. Thus Evans (1991) was able to
prove the existence of a trapped mode which makes
small antisymmetric oscillations about a thin rigid strip
which is on the centreline and parallel to the sides of
an acoustical wave guide or wave tank. More recently
Linton (2001) used the method to obtain an accurate
solution to the classical finite dock problem in oblique
waves whilst Chung & Linton (2003) used the method
to determine the scattering of flexural-gravity waves by
a gap between two semi-infinite thin elastic sheets.

6. Uniqueness Proofs

Despite the apparent simplicity of the governing
equations (1) to (7), until very recently little was
known as to the circumstances under which any so-
lutions of these equations were unique. Uniqueness is
equivalent to replacing the conditions (6) and (7) by
φ → 0 sufficiently rapidly as x → ±∞. Much more is
known when (2) is replaced by (15) for long cylinders,
and Stokes (1846) showed that φ = e−k(x cos α+y sin α)

was a solution to these homogeneous equations over
a uniform sloping beach of angle α provided K =
k sinα.These localized edge waves were generalized by
Ursell (1952) who constructed a complicated combina-
tion of exponentials as a solution which showed that
there were in fact n bounded edge wave frequencies
where n satisfied K = k sin(2n + 1)α. A construc-
tive derivation which includes unbounded solutions at
the shore is due to Roseau (1958). Ursell (1951) also
showed by constructing appropriate multipoles, that
if K < k, there existed a non-uniqueness in the form
of a trapping mode confined to the vicinity of a long
submerged cylinder describing waves travelling along
the cylinder and decaying in a direction normal to
the cylinder axis. The existence of such modes over
a general symmetric change in bottom topography was
proved by Jones (1953)in a difficult paper using func-
tional analysis.For surface obstacles in either two or
three dimensions, most approaches have exploited the
ideas of John (1950) using energy bounds to extend the
conditions for uniqueness. John’s proof is extremely

simple. It is easy to show that∫
W

|∇φ|2dxdy = K

∫
F

|φ|2dx. (18)

where W is the water region and F is the free surface
excluding any partly-immersed bodies. From (4) and
Havelock’s result (8) we have∫ ∞

0

φ(x, y)e−Kydy = 0 (19)

in deep water where there are no bodies for x > 0.
Integration by parts and use of the Schwarz inequality
gives

K|φ|2(x, 0) ≤ K

∫ ∞

0

|φy|2dy
∫ ∞

0

e−2Kydy

≤ 1
2

∫ ∞

0

|∇φ|2(x, y)dy (20)

Integration over x now gives an inequality which con-
tradicts (18) unless φ = 0. Thus John concluded
that the water wave problem was unique for a sin-
gle partly-immersed body provided that its horizontal
cross-section for y > 0 did not exceed its surface value.
Extensions of John’s result are discussed at length by
Kuznetsov et al(2002).
Until recently the strictly two-dimensional problem for
surface or submerged obstacles was presumed to be
unique as it was not clear how a local oscillation could
remain trapped by a partially submerged body or bod-
ies. The question was finally resolved once and for
all when McIver (1996) constructed a simple counter-
example to show that the potential

φ =
∫ ∞

0

e−ky cos k(x− a) + cos k(x+ a)
k −K

dk (21)

when Ka = π/2 described a local two-dimensional os-
cillation between a certain family of pairs of surface-
piercing cylindrical cross-sections. Since then numer-
ous examples have been discovered in both two and
three dimensions including cases of submerged pairs of
bodies. It is still not known however whether a single
surface-piercing body can exhibit a non-unique solu-
tion. For an up-to-date review of current uniqueness
proofs, including trapped modes, see Kuznetsov et al
(2002).

7. Conclusion

In this brief review I have touched upon some of the
powerful mathematical techniques which have been in-
troduced to solve the deceptively simple equations of
linear water waves whose solutions continue to frus-
trate and delight successive generations of mathemati-
cians.
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