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1 Background

Classical analysis of problems of floating bodies in waves
relies often on the inviscid-fluid assumption, which has
provided useful engineering results. However, it is im-
portant that one should also assess the effects of viscos-
ity on this simpler means of modeling, or at least assess
it in a controlled environment. As is well known, the so-
lution of the viscous-fluid flow problem with a free sur-
face can be quite demanding. Unlike inviscid-fluid flow
which can be well treated by a boundary-integral formula-
tion, viscous flow requires one to work with the entire flow
field. Field discretization is hence often necessary, and can
be cumbersome with mesh-generation grid-convergence is-
sues that need to be addressed. Further, the complication
that goes with accommodating the unknown moving free-
surface boundary must be handled.

The advent of an intermediate but efficient solution
methodology called Free-Surface Random-Vortex Method
(FSRVM) for modeling vortical flows in a wavy environ-
ment makes such efforts of assessment more manageable.
The FSRVM method was outlined in Yeung et al. (1998).
An overview of its validations and wide-ranging capabili-
ties was given in the review article of Yeung (2002). This is
a boundary-integral method that merges inviscid-fluid mod-
eling with a grid-free solution of the Navier-Stokes equa-
tion.

In this paper, this method for viscous free-surface flow is
used to investigate the effects of viscosity on two categories
of hydrodynamic problems:

A swaying cylinder submerged under a free surface.
The analytical solution of this problem was carried out
skillfully by Ogilve (1963), who was the first to discover
the possible existence of negative added mass for heave
motion. More recently, a linearized Navier-Stokes solution
of this problem was developed by Yeung & Wu (1991).
They provided the necessary viscous-fluid Green functions
of the Navier-Stokes equations with the convective terms
neglected, but the effects of free-surface included. This
was essentially a free-surface “vorticity-diffusion” theory,
which marked the beginning of the many recent efforts to
model viscous effects on free-surface flows. The solution
of FSRVM to be shown below will address the nonlinear
effects as a result of vorticity generated by body motion.

Resonant hydrodynamics of twin bodies. Analysis of
pairs of surface-piercing heaving circular cylinders was
performed by Wang and Wahab (1971). It showed the
occurrence of a multitude of ”moonpool modes” of
oscillation in the gap between the the twin bodies. At
such resonant modes, the added mass and damping vary
rapidly. The joint bodies experience substantial inertia and
damping at the same time. The occurrence of these modes
is marked by a sign change in the added mass coefficient.
This behavior is quite a contrast to the so-called “trapped
modes” recently investigated by McIver (1996) and others,
In a manner consistent with John’s (1950) original non-
uniqueness proof for a single body. John established that
the condition for the unique (frequency-domain) solution
to a class of single surface-piercing bodies requires that
any vertical line emerging from the body should not
intersect the free surface. In the frequency domain, McIver
obtained specific shapes of a pair of bodies which satisfy
homogeneous boundary conditions everywhere. Newman
(1999) extended the problem to axisymmetric three-
dimensional toroidal bodies. The occurrence of trapped
modes is marked by large hydrodynamic inertia but with no
radiating waves. We will focus our time-domain solution
by FSRVM on the latter case of twin bodies. The more
conventional “resonant” event is addressed elsewhere.

2 The FSRVM Solution
FSRVM uses a complex-variable boundary-integral method
to solve the two-dimensional problem. It is based on
an Eulerian-Lagrangian description and is particularly
efficient at solving for viscous effects with nonlinear
free surface boundary conditions. Briefly, from Yeung
et al. (1998), let the 2-D computational domain be desig-
nated by

�
, bounded by � � , with the body denoted by

the total contour � ��� , the free surface � ��� , and an open
boundary � ��� . We take the �	� axis to be horizontal and
the �	
 axis vertical. FSRVM uses a formulation of vortic-
ity � , which is normal to the �	��
 plane and stream function


. The governing equations are:

��� ����������������� 
 ������� (1)

where
���

is the material derivative and � the kinematic vis-
cosity coefficient.



The vorticity field can be represented by a collection
of vortex blobs, whose movement is governed by the (1),
which is solved by a two-(fractional) step method: a diffu-
sion step and a convection step. The former is handled by
a random-walk algorithm but the latter requires evaluating
the complex interaction of the vortex blobs and the bound-
ary � � . To model this, we can write


 � 
���� 
�� , where
��
is vortical and


��
a homogeneous solution. Given that
��

satisfies the Laplace’s equation, we can introduce a
complex potential � �	��
 �
�
� = � � +i


��
, where � � is the con-

jugate function (velocity potential) and

 � � ��� 
 .

The existing knowledge of

��

and the solution of � � will
give the velocity field. To find � � , we use Cauchy’s integral
theorem to obtain an integral equation to be solved, with
either � � or


��
specified on the boundary � � :

� � � �	��
 � � ������ � �	��� �� � 
�� � ��� for z � � ��� (2)

On the body boundary � ��� , the no-leak condition can be
shown to yield:
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where
!� � , !
 � , and

!) are the rigid-body velocities of the
body and * , �/. #� � � #
 � for a body point with coordi-
nates

� #� � #
�� . If



is on the free surface � �10 , the kinematic
boundary condition for the complex velocity 2 �43 � � 5 can
be used to advance the location of the free surface, while
the dynamic condition can be used to advance � � :

��� 
 ��276 ��
 �
�
� � �$8 ��
 � 
 , � � (4)
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 � �$8;� � (5)

with 6 indicating complex conjugate. The damping func-
tion �$8 in Eqns. (4) and (5) is trivially zero except in the
damping layers, say, �=<?> ��@ �BA and <?C ��D �BE on
the left and right ends of the free surface, and


 , is the ini-
tial location of the lead free-surface points of the layers at� �F� . The use of damping layers allows a no-disturbance
condition be applied on the open boundary � ��� . Alter-
native absorbing boundary conditions provided by Clément
(1996) are also effective.

After � � is solved, the important “no-slip” boundary
condition on � ��� is satisfied by generating vorticity of an
opposite sign to nullify the tangential surface velocity from� . The convective movement of the vortex blobs is com-
puted using an � �HG � algorithm, which allows long-time
simulation possible as the number of vortices,

G
, increases

in time. The diffusion algorithm involves a random walk,
as mentioned earlier.

To obtain the forces and moment on the body, we need
to solve for �B� �JI �B� , since �K� �LI �B� is needed in Euler’s in-
tegral to evaluate the fluid pressure.M N
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Thus, an integral equation in parallel to Eqn. (2) has to be
set up for �B� �QI �B� . The requisite boundary conditions for

�K� �JI �B� on � �P0 are then given by Eqn. (5). On � ��� ,
� 
��
�B� �SR� �T#
 �UR
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Once �B� �JI �B� has been obtained, the pressure, M , is known
from (6) and the forces and moments on the body follow
directly from integration:

Y ^�_ � ^ � �a`cbd\ � �L����e MVY fV_ � f � � fV_ 
 � f � ��\ �Jg � (8)

Note that in the absence of

��

, the flow is entirely irro-
tational. Thus, a fully nonlinear inviscid solution can be
recovered using FSRVM by turning off the vorticity gener-
ation process.

In the results to follow, the added-mass and damping co-
efficients associated with a given direction of body motion,
e.g., h � � �ai � � for heave, are obtained by Fourier-analyzing
the time history or forces or moment, using a moving win-
dow that has a width of one period of oscillation of the bodyj

. If the flow process is steady, h � � and i � � would not be
changing in time. However this is not true in viscous flow.
Non-dimensional coefficients, when presented, are normal-
ized by density

N
and k , the cross-sectional area of the body

profile. Frequency l is normalized by . 9 I$m where
m

is a
“characteristic beam”.

3 Results and Discussion
3.1 Submerged oscillating circular cylinder
A fully submerged circular cylinder of laboratory scale, of
diameter

� �"nT� � o cm, is undergoing a sinusoidal, sway-
ing motion of amplitude, p . The depth q from 
 �r� to
center of the cylinder is � � s$o � . This configuration has the
known property of negative added mass for heave motion
(Ogilvie, 1963) in a range of l 6 , where l 6ut l . � I ( 9
is typically � � & � . This property was in fact observed in
conventional inviscid-fluid computations as well as in the
vorticity-diffusion theory of Yeung & Wu. FSRVM also
reproduced this negative added-mass property.

In the present study, the cylinder is subjected to two dif-
ferent sway-motion amplitude to diameter ratios, p I � �� � �TnTn and p I � �v� � & � , or equivalently, a Keulegan-
Carpenter number, wyx t ( � p I � �z� � ( �T{ and � � | ($} ,
respectively, with the frequency parameter, l 6 varied from& � � to ~ ( . The FSRVM computations are compared with
those obtained using the frequency- domain method in Ye-
ung and Wu (1991). The specific study corresponds to
a “frequency Reynolds number” *�� t 9 � I �Ql b defined
therein varying from & � | n x & �Q� to

oL� }$�
x & �T� ( � taken

at a standard value). In this range of values, Yeung and
Wu argued that under the small-motion assumption, the ef-
fect of viscosity is to merely generate a thin shear layer,
which would have little overall effects on the inviscid-fluid
coefficients. Figure 1 shows the typical time histories of
the sway force, heave force, and roll moment of the sub-
merged circular cylinder under the prescribed sway motion
of p I � �S� � �TnTn with l 6 � � & � �T� . The sway-force time
history is relatively smooth and continuous, as compared



Figure 1: Time history of Sway, heave forces, and roll moment, � ������� ��� , 	�

� ����� �����
( ��� ����� �
��� ).

to the heave force and roll moment time histories, which
have significant fluctuations. The heave force has approx-
imately twice the frequency of the sway force, which is
a consequence of the nonlinear body boundary condition.
Figures 2 and 3 show the added-mass and linear damp-
ing coefficients of the two cases of p I � � � � �TnTn andp I � �z� � & � , as functions of l 6 � . Also plotted are the
results obtained from the vorticity-diffusion theory of Ye-
ung and Wu (1991). While both cases have similar trends
of added masses, the FSRVM values are higher than those
from the vorticity-diffusion theory. This may be interpreted
as the effect of including convection in the FSRVM method.
The difference between the two solutions diminishes as the
frequency increases. Interestingly, for damping, all three
sets of results seem to be in general agreement, especially
at higher frequencies. It is noteworthy that in the two sets
of results of FSRVM, the case with the lower amplitude ra-
tio, p I � � � � �TnTn , has a higher linear damping coefficient.
The Yeung & Wu results appear to overpredict the linear
damping across the entire frequency range studied, albeit
converge at higher frequencies to the case of low p I � ratio
of FSRVM. Figures 4 and 5 show the differences in the vor-
tex blob distribution around the cylinder at the typical fre-
quency, l 6 � ~ ( � � The dispersion distance of the vortex
blobs for the smaller amplitude ratio case is clearly lower
than that of the higher amplitude-ratio case With the exis-
tence of vorticity, the equivalent bodies of the two cases are
enlarged, especially in the direction parallel to the x-axis.
These elongated, equivalent bodies would also tend to gen-
erate less waves on the free surface than the original cir-
cle. Since lower frequency would allow a longer duration
for viscous diffusion to take place, an elongated equiva-
lent body would hence would yield smaller damping coeffi-
cients (Figure 3) when compared with the circular shape in
the Yeung & Wu solution. Further, with a larger amplitude,
it would be natural for the case of p I � �U� � & � to assume
a longer equivalent body, and thus lower damping. As the
frequency increases, the damping of the viscous cases con-
verge to that of the diffusion theory as the diffusion time
diminishes. Higher frequency would also mean a higher
Reynolds number, with inertial effects beginning to domi-
nate. A more general test of the effects of convection can
be done by carrying out computations for p I � ��� � & �Q� .
3.2 Twin Bodies with Trapped Modes

The existence of trapped modes depend on the shapes of
the bodies. The “McIver profile” was generated by plotting

streamlines generated using the results of McIver (1996).In
this nonlinear study, the nonlinear solution requires a def-
inition of the body above 
 � � which we obtained by
extending the generated streamline above 
 � � . The
first trapped mode is located at l 6 � & � n } , where

m
is the

characteristic beam defined as the submerged area of one
body divided by its draft. With the generator of vorticity
turned off, and at an “absolutely small” amplitude of mo-
tion, p I$m � �=� � �T�T� � n , where one could argue that lin-
earized theory remains valid, FSRVM produces the time
history of wave elevation in the gap and beyond the body (at
� I$m ��{ ) as shown in Figure 6. If the bodies are given ver-
tical motion at this frequency, the solution was expected to
grow without bound (McIver et al. , 2002). Instead, we ob-
served bounded free surface elevations. Note that, in mag-
nitude, the waves outside are only � � & ��� � � of that in the
gap, a characteristic of trapped-mode behavior. An exami-
nation of the hydrodynamic coefficients in Figure 8 reveal a
local minimum in damping and a local maximum in added
mass close to this trapped-mode frequency.

With viscosity present, but retaining the small-motion as-
sumption, the shape of the profile is effectively unaltered
by the shear layers around most of the body except in the
region near the moolpool. Even so, this is sufficient to in-
crease radiating wave heights (Figure 7) and change the be-
haviour of the moonpool. As a matter of fact, the vorticity
in the convergent gap between the twin bodies (Figure 9)
accentuates the motions since it increases the constriction.
Figure 8 shows a distinct change in frequency where the
minimum damping coefficient occurs. The region to the
right of the black vertical lines display resonant behaviour
where coefficients cannot be accurately obtained.
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Figure 2: Added mass coefficient versus frequency, 	�

� �
��� �����

,
��� � �

( ��� � ��� �
��� � ��� � ��� ).
Figure 3: Linear damping coefficient versus frequency,
	�

� ����� �����

,
��� � �

( ��� ����� �
��� � ��� � ��� ).

Figure 4: Vortex Blob plots for 	�

� ����� �����
and � � ��� �

. Figure 5: Vortex Blob plots for 	�

� � ��� � �
and � � ��� �

.
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Figure 6: Wave Elevation at �
� �

and external location,
� ������� ��� , inviscid case.
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Figure 7: Wave Elevation at �
� �

and external location,
� ������� ��� , viscous case.
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Figure 8: Non-dimensional Added Mass and Damping Coef-
ficients versus Frequency.

Figure 9: Vortex-blob structure around body profile at
trapped mode.



Discusser: Q. Ma
You have given results associated with the sway motion of a submerged cylinder with

amplitude being up to 10 % of its diameter. Could I ask what will happen if the amplitude
is larger than that ?

Author’s reply:
For this configuration, if the amplitude is increased beyond 10 %, the simulation pro-

duces breaking waves. The current version of the algorithm is unable to handle breaking
waves and the resulting shortened force time history would be inadequate to obtain mean-
ingful Fourier values for the hydrodynamic coefficients.

Discusser: M. Mc. Iver
In the twin floating cylinder case would you expect to find an extra ’resonant mode’ as

well as the trapped mode (analytically) in the linear case? This would be quite a surprise
as I would expect the trapped mode to coincide with the lowest moon-pool resonance.

Author’s reply:
Wang and Wahab (1971, cited in our work) studied analytically the heaving behavior

of twin circular cylinders. They showed the existence of a family of ’resonant’ modes, with
singular hydrodynamic coefficients, dependent on the cylinder geometry and separation.
It is reasonable to expect that the current cylinders would also have similar behavior
in addition to the ’trapped mode’ oscillation. The behavior around these two type of
frequencies are different.


