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INTRODUCTION 
There have been extensive applications of FEM to 

nonlinear wave and floating body interactions recently. A 
typical example in this area is the simulation of interaction 
between waves and fixed structures in numerical tanks (Ma, 
Wu and Eatock Taylor 2001a, b). Hu, Wu and Ma (2002) 
extended this method to the case that a cylinder is in forced 
motion. Both of these two works are based on structured 
meshes with connectivities between nodes remaining 
unchanged during the simulation. More recently, Wu and Hu 
(2003) considered a floating structure in large amplitude 
motion. A hybrid mesh, with the unstructured near the body 
and the unstructured away from the body, is used. A 
completely new grid is generated regularly and information 
is transported from one mesh to another. All these works, 
however, are for cylindrical structures with no variation of 
the cross section in the vertical direction. 
 
   For the problem of steep wave interaction with structures, 
important topics of interest are wave impact at the bows of 
FPSOs and green water loading. A noticeable feature in 
FPSO design is the large bow with pronounced flare above 
the still waterline. A greater flare can improve the 
performance of ships by increasing local reserve of buoyancy 
and limiting the green water on deck (Schneekluth and 
Bertram, 1998). With such a change in design, traditional 
prediction methods become less reliable and direct numerical 
simulation would be more appropriate. However, flare could 
cause a rapid variation in pressure especially when the 
relative angle between the structure and the free surface is 
small. Some certifying authorities call for additional 
localized strengthening to be incorporated in FPSO vessels 
with a rounded bow and flare.  The hydrodynamic forces on 
the flared structure may have stronger nonlinearity than those 
without flare. This will make the simulation more difficult 
and complex. The aim of the present study is to develop a 
finite element based numerical method to investigate the 
interaction between waves and flared structures using the 

fully nonlinear wave theory.  The study is also relevant to the 
assessment of ringing vibration of monotower structures that 
incorporate flare above the still water level  (e.g. Draugen 
platform). 

MATHEMATICAL FORMULATION  
A numerical wave tank with length L, width B and depth h 

is shown in Fig. 1. The x-axis of the coordinate system is 
along the longitudinal direction of the tank,  z-axis is positive 
upwards and the origin is on the undisturbed free surface. 
The fluid is assumed to be inviscid and incompressible, and 
the flow is irrotational. Velocity potential φ in the fluid 
domain therefore satisfies the Laplace equation, 
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On the instantaneous free surface, the dynamic and kinematic 
conditions can be described by the Langrangian form 
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where g is the acceleration due to the gravity andη is the 
wave elevation.  

On the wave maker, the condition is prescribled as 
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where  is the the velocity of the wave maker and n is its 
normal vector pointing out of the fluid domain.  The 
boundary condition on the moving body surface is  
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On the side wall and bottom of the tank, the boundary 
condition is  
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The radiation condition at the far end is imposed through 
a damping zone and sommerfeld condition. The initial 

 



conditions should be given since the problem is solved in 
time domain 
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FINITE ELEMENT DISCRETIZATION AND 
NUMERICAL PROCEDURES 
    An essential part of CFD is the mesh generation. As 
mentioned in Wu & Hu (2003), a fully 3D grid generator is 
usually too computationally intensive for this problem, as a 
typical simulation would allow a few minute CPU at each 
time step. Thus, they adopted a 2D method for cylindrical 
structures. The mesh is first obtained through the tri-tree 
method on a horizontal plane and the 3D mesh is then 
generated by drawing straight lines in the vertical direction. 
The procedure is efficient but it does not allow variation of 
cross section in the vertical direction, even though the shape 
of the section can be arbitrary.      
   When the body has a flare, substantial change in mesh 
generation is required. For a cylindrical structure, the 
projection of the waterline on the free surface will remain the 
same if the body is in translation only. For a flared structure, 
the projection will vary considerably. We summarize the 
mesh generation project below. 
 
1. The wavy free surface is first projected to the horizontal 
plane. A 2D mesh generator called BAMG (Hecht, 1998) is 
then used, which is based on the Delaunay algorithm. One of 
its advantages is that it is less computational intensive.  
 
2. The horizontal coordinates are used to locate nodes on the 
free surface, using interpolation if necessary.  
 
3. A curve is then drawn along the depth to form the 3D 
mesh. We use prisms instead of tetrahedral elements here. 
One of the advantages of this element is that its index system 
is much simpler for this problem. 
 
   The procedure of the mesh generation is shown in figure 2 
to 6.  It should be noted that there is a zone of structured 
mesh near the wave maker. The reason of its presence is due 
to the transverse stability discussed by Wu, Ma & Eatock 
Taylor (1996). They found that the stability depends very 
much on the mesh structure used near the wave maker and 
the one shown in figure 4 is most stable among many 
choices.  

 
After the mesh is generated, we can solve the problem 

using the finite element method. The coordinate 
 in the fluid domain and the velocity at x can 

be expressed using shape function N
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The finite element equation can be derived by using the 
Galerkin method 
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Here we use the 6-node shape function with the prism 
element discussed previously. As a result, the global matrix 
is calculated through numerical integration. This is different 
from the 4-node linear shape function with the tetrahedral 
element where the integration can be done analytically. The 
feature here is that the procedure can be used by higher order 
elements. Once the coefficients in the matrix have been 
found, Eq. (10) is solved by the PCG iterative method with 
SSOR preconditioner.  
   When tracking the wavy motion and calculating force, the 
velocity on the free surface and body surface are needed at 
each time step. Ma, Wu and Eatock Taylor(2001a, b) 
presented a method which requires the node on the free 
surface and two nodes immediately below the free surface on 
the same vertical line. The method is found to be accurate but 
it is suitable only for a cylindrical structure. For the flared 
structure, the method developed by Wu and Eatock Taylor 
(1994) when they considered the 2D problem is adopted. We 
first expand the velocity in terms of the shape function 
similar to Eq. (9). Galerkin method is then used   
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This method removes the restriction mentioened above but 
the penalty is that one has to solve another linear equation.  
    
   Finally the first order Adams-bashforth scheme is adopted 
to update the velocity potential and the locations of the free 
surface 
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 The method developed by Wu and Eatock Taylor (1996, 
2003) is employed to calculate the force and the body 
motion. 

     

 



NUMERICAL EXAMPLES 
In all the simulations, the depth h of the tank is used to 

dimensionalize the length. The tank length L is 12, and 
breadth B is 0.72. The radius r of all cylinders is 0.1416. The 
body is located at a distance of Lwc=7 away from the wave 
maker, and the length of damping zone is selected as Ldm=2λ 
(λ is wavelength). When the body has flare, the variation of 
the cross section starts from z=-0.25. The dimension of the 
truncated cylinder is shown in Fig. 7. The wave maker is 
assumed to be subject to the following horizontal harmonic 
motion 

)cos( tax ω−= ,                  (14) 
where a is the amplitude of motion, and ω  is the frequency.  

In all computations, the nodimensional frequency 
hg //ω  is set to be 2.0. A typical wave profile around the 

flared cylinder is shown in Fig. 8.  Fig. 9 shows the history 
of wave at the front of a bottom mounted flared cylinder with 
three different amplitudes a=0.01, 0.02 and 0.03. In the 
figure, τ is nodimensional time and defined as ght //=τ . 
The nonlinear effect is evident.  Fig. 10 shows the 
comparison of wave histories between the truncated and the 
bottom mounted cylinders with flare. There is no obvious 
difference between the two cases, which is expected as 
deeply submerged part of the body has little effect on waves. 
A comparison of hydrodynamic force between bottom 
mounted cylinders with and without flare is shown in Fig. 11. 
The force f and moment m about the bottom of the cylinder 
in the figure are defined as 2forcef gr aρ=  
and 2momentm gρ= r a h .  

A major difference in results for cylinders with and 
without flare is the vertical force which obviously does not 
exist or is very small for the former. Fig. 12 gives the vertical 
force (excluding the static force) when a=0.02. It shows that 
the vertical force contains higher harmonic components. The 
history of the force for both  bottom mounted and truncated 
cylinders is shown in Fig. 13.  
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Fig. 1 Computational domain for a numerical tank 

 
Fig. 2  2D structured mesh 

 



     
Fig. 3  2D unstructured mesh 

 
Fig. 4  2D hybrid mesh 

          

 Fig. 5   3D mesh for one cylinder    
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Fig 6   Surface mesh on a truncated cylinder with flare 
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Fig. 7  Dimension of the truncated cylinder with flare
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Fig. 8  Wave profile around the flared cylinder 
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Fig. 9  Time history of wave at the front side of 
the bottom mountedcylinder with flare
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Fig. 10 Time history of wave at the front side of the 
cylinder with flare at a=0.01
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Fig.11  Hydrodynamic force on the bottom mounted cylinder at a=0.01
(a) force in x-direction; (b) moment
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Fig. 12  Vertical force on the bottom mounted cylinder at a=0.02
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Fig. 13  Time history of force on the cylinder with flare at a=0.01
(a) force in x-direction; (b) force in y-direction; (c) moment
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