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Introduction

This paper describes an investigation into the effect on wave propagation of an ice sheet of varying
thickness floating on water of varying depth. A variational principle equivalent to the governing equa-
tions of linear theory in three dimensions is given, forming the basis of a Rayleigh-Ritz approximation.
Here we invoke the mild-slope approximation in respect of the ice thickness and water depth variations
to derive a relatively simple model for slowly modulating waves from which the vertical coordinate is
absent. We consider both the scattering of flexural-gravity waves by variations in the thickness of an
infinite ice sheet and the depth variations, and the scattering of free surface gravity waves by an ice
sheet of finite extent and varying thickness, with arbitrary topography again incorporated.

Existing work related to the present contribution includes that of Meylan (2001) who also used a
variational principle for the full linearised equations to investigate wave interaction with rectangular
plates of constant thickness in three dimensions. Andrianov & Hermans (2003) recently derived an
integro-differential equation for the problem of an sheet of finite extent floating in a free surface.

Formulation and approximation

Using cartesian coordinates x, y, z with z directed vertically upwards, z = −h(x, y) coincides with the
bed and z = −d(x, y) with the lower surface of the ice sheet, which is represented by an elastic plate
of constant density ρi and varying thickness D(x, y).

The usual assumptions of linear wave wave theory and the removal of a harmonic time dependence
lead to the equations

∇2φ = 0 (−h < z < −d), φz +∇hh.∇hφ = 0 (z = −h), (1)

representing conservation of mass in the fluid and zero normal flow across the bed; φ(x, y, z)exp(−iωt)
is the velocity potential of the fluid motion and the notation

∇ = (∂/∂x, ∂/∂y, ∂/∂z), ∇h = (∂/∂x, ∂/∂y, 0)

has been adopted. Using thin plate theory and representing the elevation of the ice-fluid interface
from its equilibrium position by η(x, y)exp(−iωt), we obtain

(1− α)η + Lη − φ = 0, ∇hd.∇hφ + φz = κη (z = −d), (2)

which respectively represent the equation of motion of the plate and the kinematic condition at the
interface. The operator L is defined by

Lη ≡ ∇2
h(β∇2

hη)− (1− ν){βxxηyy + βyyηxx − 2βxyηxy}
and

κ = ω2/g, α(x, y) = κρiD(x, y)/ρw, β(x, y) = ED3(x, y)/12ρwg(1− ν2),

where ν is Poisson’s ratio for ice, ρwgβ is its flexural rigidity, E is Young’s modulus and ρw is the
density of water.

The functions φ(x, y, z) and η(x, y) are given by solving (1) and (2), together with far field and edge
conditions as appropriate. Alternatively, these equations may be regarded as the natural conditions
of the variational principle δL = 0, where L is the functional defined by

L(ψ, χ) =
1
2

∫ ∫

D

{∫ −d

−h
(∇ψ)2 dz − 2κβ(1− ν)(χxxχyy − χ2

xy)

+κ{(1− α)χ2 + β(∇2
hχ)2 − 2χ[ψ]−d}

}
dxdy,



D being a simply connected domain in the plane z = 0. Because the integrand has the value of the
Lagrangian density at (x, y), δL = 0 is in effect Hamilton’s principle. It can be verified that L is
indeed stationary at ψ = φ and χ = η, where φ and η satisfy (1) and (2); the natural conditions at
the boundary of D are not relevant to the investigation.

It has been tacitly assumed so far that D is twice continuously differentiable. Where this is not
the case (1) and (2) are replaced by jump conditions and these can be deduced from the variational
principle by introducing an internal boundary, Γ say, in D. If n = i cos θ + j sin θ, s = −i sin θ + j cos θ
are local unit vectors respectively normal and tangential to Γ, where θ = θ(s) and s measures arc
length on Γ, then the additional natural conditions of δL = 0 are continuity across Γ× [−h,−d] of φn

and across Γ of

Mη ≡ ∇2
hη − (1− ν)(ηss + θ′ηn),

Sη ≡ (β∇2
hη)n − (1− ν){(ηss + θ′ηn)βn − 2(ηns − θ′ηs)βs − (ηns − θ′ηs)sβ},

}
(3)

which are the bending moment and shear stress. Here, ∂/∂n = n.∇h and ∂/∂s = s.∇h. If Γ is a line
of discontinuity of D, then Mη and Sη are required to vanish on each side of Γ.

The Rayleigh-Ritz method may be applied to the variational principle: an approximation to its
stationary point is also an approximation to its set of natural conditions (1), (2) and, if appropriate,
(3). Solutions of these equations can therefore be obtained to any accuracy by taking a large enough
trial space.

Here we take the one-term trial function

φ(x, y, z) ≈ ψ(x, y, z) = ϕ(x, y)w(x, y, z), w(x, y, z) = sech k(h− d) cosh k(z + h), (4)

where k = k(x, y) denotes the positive real root of the local dispersion relation

(1− α + βk4)k tanh k(h− d) = κ (5)

with h = h(x, y), d = d(x, y) and D = D(x, y). The motivation for this choice is that, with h, d and
D constant, exp(±ikx)sech k(h− d) cosh k(z + h) are plane wave solutions of (1) and (2), k also being
constant in this case. We therefore expect ϕ to represent waves modulated by the variations in h, d
and D in the general case.

Implementing δL = 0 with ψ given by (4), we find that

∇h.a∇hϕ + bϕ + κχ = 0, (1− α)χ + Lχ− ϕ = 0, (6)

are the resulting approximations of (1) and (2), where

a =
∫ −d

−h
w2 dz = (4k)−1sech2(kH){2kH + sinh(2kH)},

b = k2a− k tanh(kH) +∇h.

∫ −d

−h
w∇hw dz −

∫ −d

−h
(∇hw)2 dz,





(7)

in which H(x, y) = h(x, y)− d(x, y). We note from (5) that k ≡ k(H, D) and it is easily shown from
(7) that a ≡ a(H,D) and b ≡ b(H,D). Thus the equations (6) that determine the approximations
φ ≈ ϕw and η ≈ χ contain the geometry of the problem only through H(x, y) and D(x, y). This is to
be expected as we have combined the averaging that leads to thin plate theory with averaging through
the fluid layer. We remark that the so-called “mild-slope approximation” that we have invoked to
derive (6) is an extension of the shallow water approximation to the whole wavelength régime; the
shallow water counterpart of (6) is obtained by taking the long wave limit in the first equation.

Discontinuity conditions that must replace (6) where H and D are not sufficiently differentiable
can be deduced from the variational principle. In particular, continuity of Mχ and Sχ applies to
χ ≈ η.



Two-dimensional scattering

We illustrate the approximation by applying it in a two-dimensional context where h = h(x), d = d(x),
D = D(x) and the motion is independent of y. In this case (6) may be written as the second order
system

(a(x)φ′0)
′ + b(x)φ0 + κφ1 = 0, β(x)φ′′1 − φ2 = 0, φ′′2 + (1− α(x))φ1 − φ0 = 0, (8)

where φ0 = ϕ, φ1 = χ and φ2 = βφ′′1 is the bending moment.
We suppose that

h(x) = h0, d(x) = d0, D(x) = D0 (x < 0)

h(x) = h1, d(x) = d1, D(x) = D1 (x > `)

}
, (9)

where hi, di and Di are constants for i = 0, 1. It is not difficult to show that in regions where h = hi,
d = di and D = Di a complete set of solutions Φ = (φ0, φ1, φ2)T of (8) is

ci(ki)e±ikix, ci(µi)e±iµix, ci(µi)e
±iµix,

with
ci(u) = (1, κ−1(aiu

2 − bi),−κ−1βiu
2(aiu

2 − bi))T .

Here ki denotes the positive real root of (5) with H = Hi and D = Di, and µi = pi + iqi, where pi > 0
and qi > 0. For each of the subdomains x < 0 and x > `, Φ therefore consists of an incoming and an
outgoing propagating wave mode and two exponentially decaying modes. Explicitly,

Φ(x) = C0(A0eik0x, 0, 0)T + C0(B0e−ik0x, B
(1)
0 e−iµ0x, B

(2)
0 eiµ0x)T (x < 0), (10)

and

Φ(x) = C1(A1eik1(`−x), 0, 0)T + C1(B1e−ik1(`−x), B
(1)
1 e−iµ1(`−x), B

(2)
1 eiµ1(`−x))T (x > `), (11)

where Ci denotes the 3× 3 matrix Ci = (ci(ki), ci(µi), ci(µi)). The amplitudes B
(j)
i (i = 0, 1; j = 1, 2)

of the evanescent waves are unknown and the assigned incident wave amplitudes A0 and A1 and the
unknown scattered wave amplitudes B0 and B1 can be connected by

(
B0

B1

)
= S

(
A0

A1

)
, S =

(
R0 T1

T0 R1

)
, (12)

where Ri, Ti are the reflection and transmission coefficients for a wave incident from x = −∞ (i = 0)
and x = ∞ (i = 1).

The solutions (10) and (11) provide boundary conditions for a numerical solution of (8) in the
interval 0 < x < ` by using appropriate continuity or jump conditions at x = 0 and x = `.

Partial ice cover

For the case in which the ice sheet does not extend to infinity, the variational principle has to be
amended to include domains corresponding to an unloaded free surface. The approximation corre-
sponding to (4) can be used in such domains and is simply

φ(x, y, z) ≈ ψ(x, y, z) = ϕ(x, y)w(x, y, z), w(x, y, z) = sech (k̃h) cosh k̃(z + h),

where k̃ = k̃(x, y) denotes the positive real root of the usual dispersion relation k̃ tanh(k̃h) = κ. The
single equation corresponding to (6) in the free surface regions is the modified mild-slope equation
and (6) continues to apply unchanged where there is ice cover.

In two dimensions, we can consider the situation given in (9) with di = Di = 0 for i = 0, 1, so that
a free surface occupies x < 0 and x > `. In the semi-infinite regions there are now only travelling wave
modes with wavenumbers k̃0 for x < 0 and k̃1 for x > ` and the conditions matching the solutions in
these regions with the numerical solutions at x = 0 and x = ` include the vanishing of the moment
and the shear stress at the edge of the ice. With these adjustments, the structure has the same form
as that considered above for the case of overall ice cover and, in particular, (12) may still be used to
describe the scattering process.
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Numerical results

Numerical results for two-dimensional scattering are shown in the figure for the two problems described
above. The parameter values used to produce the graphs are E = 5GPa, ν = 0.3, ρw = 1025kgm−3

and ρi = 922.5kgm−3. We take d = ρiD/ρw and apply Archimedes’ principle for finite sheets.
In part (a) of the figure we give an example of scattering over a flat bed by a linearly thickening ice

sheet with D(x) = D0 + ADx/` (0 < x < `). The magnitude of the reflection coefficient R0 is plotted
against the wavenumber of the incident wave for D0 = 1m, H0 = 20m, ` = 40m and AD = 0.5m
(solid line), 1m (long dash), 2m (short dash). As expected, interference effects between the ends of
the varying ice region dominate the graph and the maximum reflected energy increases with the ice
thickness.

In part (b) a corresponding set of results is shown for a finite ice sheet of parabolic profile

D(x) = D0 + 4AD(1− x/`)(x/`) (0 < x < `).

The parameter measured along the abscissa is again the wavenumber of the (free surface) incident
wave and D0 = 0.1m, H0 = 20m, AD = 1.35m so that the ice sheet is 14.5 times thicker at its centre
than at its ends. The graphs show the effect of varying sheet length, with ` = 40m (solid line), 80m
(short dash) and 160m (long dash). The proportion of energy reflected decreases as the length of the
sheet increases for the same maximum thickness, suggesting that the gradient of the sheet is a key
factor in the scattering process.

For a finite sheet of constant thickness, the results that we obtain are in good agreement with those
of other authors such as Tkacheva (2002). Comparison with the experimental data of Utsunomiya et
al (1995) for the bending moment and shear stress in the sheet is also reasonably good. In the case
of varying sheet and bed geometries, the accuracy of our model can be analysed by returning to the
variational principle and using a higher order approximation based on finitely many evanescent wave
modes.
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