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SUMMARY
A freely-floating structure with a moonpool constrained to move in heave can display two types of resonance. One is
associated with the fluid motion in the moonpool and the otherwith the hydrostatic restoring force on the structure. Here
the interaction between these resonances is investigated and time-domain calculations are used to illustrate the mainresults.

1 INTRODUCTION

This work is concerned with floating structures, con-
strained to move in heave, that enclose a portion of the
free surface to give a “moonpool”. Such a structure in
two-dimensions has two separated elements that both in-
tersect the free surface, and in three dimensions there is a
single element with a “hole” that contains an isolated por-
tion of the free surface. Structures with a moonpool have
been investigated by many authors; the main features are
discussed, for example, in [1] within the context of a float-
ing torus. In the linearised water-wave problem for such
structures two types of resonant behaviour can be identi-
fied. The first, referred to here as type I, is the motion of
the internal free surface as might, for example, be excited
by a wave incident on the fixed structure. The second, or
type II, resonance arises from the motion of the structure
and, in particular, from the hydrostatic restoring force.

In the present work these resonances, and the inter-
action between them, are investigated by examination of
the frequency-domain singularity structures of the veloc-
ity potential and hydrodynamic coefficients. These results
from the frequency domain are then interpreted in terms of
time-domain motions. At the time of writing the work is
incomplete and partial results only are given that mainly,
but not exclusively, focus on radiation problems in which
there is no incident wave. The main result is that the type II
resonance is usually dominant.

Structures of the type discussed here include some spe-
cial geometries that support a “trapped mode” [2]. In the
presence of a fixed structure, such a mode is a free os-
cillation of the fluid that has finite energy, does not radi-
ate waves to infinity, and in the absence of viscosity will
persist for all time. The forced oscillation of trapping
structures has been investigated elsewhere [3] and it was
shown that trapped modes are excited by almost any forc-
ing. Here it is shown that trapped modes cannot be excited
by any motion of a freely-floating trapping structure.

The plan of this abstract is as follows. The problem is
first formulated in the time domain and the link between
resonant motions in the time domain and singularities of

frequency-domain quantities is described. Numerical sim-
ulations are used to illustrate the main points.

2 THE INITIAL-VALUE PROBLEM
An inviscid and incompressible fluid with a free surface
is contained within a horizontal layer of depthh that is
bounded below by a rigid bed and extends to infinity in all
horizontal directions. Cartesian coordinates(x, y, z) are
chosen withz measured vertically upwards and the origin
in the mean free surface. The fluid layer contains a floating
structure constrained to move in heave with displacement
z = Z(t). The submerged surface of the structure is de-
noted byΓ, a normal coordinate toΓ is denoted byn, and
nz is thez component of the unit normal toΓ.

The fluid motion is assumed to be irrotational so that it
may be described by a velocity potentialΦ(x, z, t), x =
(x, y), that satisfies

∇2Φ = 0 (1)

within the fluid, the bed condition

∂Φ

∂z
= 0 on z = −h, (2)

the free-surface condition

∂2Φ

∂t2
= −g

∂Φ

∂z
on z = 0, (3)

whereg is the acceleration due to gravity,

∂Φ

∂n
= Ż(t)nz on Γ, (4)

and for all time

∇Φ → 0 as |x| → ∞. (5)

The motion is subject to the initial conditions

Φ(x, 0, 0) = P (x),
∂Φ

∂t
(x, 0, 0) = Q(x), (6)

whereP (x) andQ(x) correspond to a prescribed incident
wave. It is assumed that this incident wave is initially lo-
calised within a region away from the structure so that the
fluid around the structure is initially at rest.



The equation of motion of the structure is

mZ̈(t) = −ρgWZ(t)

− ρ

∫∫

Γ

∂Φ

∂t
(x, z, t)nz dS + F (t). (7)

By Archimedes principle the mass of the structure is the
fluid densityρ times the submerged volume of the struc-
ture. The first term on the right-hand side of (7) is the
hydrostatic restoring force andW is the waterplane area
of the structure. The second term is the hydrodynamic
force arising from the fluid motion, andF (t) is an applied
force (whenF (t) ≡ 0 the structure is called “freely float-
ing”). The initial displacementZ(0) and velocityŻ(0) of
the structure are prescribed.

3 LONG-TIME ASYMPTOTICS
Information about the initial-value problem described in
§2 can be obtained using a Fourier transform in time. The
transforms of the potentialΦ(x, z, t) and displacement
Z(t) are respectively

φ(x, z, ω) =

∫

∞

0

Φ(x, z, t) eiωt dt (8)

and

ζ(ω) =

∫

∞

0

Z(t) eiωt dt. (9)

The inversion formula for the potential is

Φ(x, z, t) =
1

π
Re

∫

∞

0

_ φ(x, z, ω) e−iωt dω. (10)

Resonances correspond to poles of the frequency-domain
potentialφ(x, z, ω) that lie on or close to the realω axis.
In the case of a pole on the axis the path of integration in
(10) must pass above the pole.

A simple pole ofφ at ω = ω0 − iε, with ω0 > 0 and
ε ≥ 0 (from causalityε must be non-negative), gives

φ(x, z, ω) ∼
φ0(x, z)

ω − (ω0 − iε)
as ω → ω0 − iε (11)

and it may be shown from (10) that ast → ∞

Φ(x, z, t) ∼ −2 Re
{

iφ0(x, z) e−iω0t
}

e−εt . (12)

In general this is a damped oscillation of the fluid but for
ε = 0, which corresponds to a trapped mode, the oscilla-
tion persists for all time. Each pole ofφ will contribute a
similar term to the large-time asymptotics ofΦ.

For a structure in infinite depth that is released from rest
the decay of the motion is ultimately algebraic [4] and not
a damped oscillation of the form given by (12). However,
for the finite-depth case considered here this algebraic de-
cay does not occur and the long-time asymptotic behaviour
is indeed a damped oscillation.

4 THE FREQUENCY DOMAIN
The frequency-domain potentialφ can be decomposed as

φ(x, z, ω) = φS(x, z, ω) + v(ω)φR(x, z, ω). (13)

whereφS is the scattering potential that satisfies

∂φS

∂n
= 0 on Γ, (14)

φR is the radiation potential that satisfies

∂φR

∂n
= nz on Γ, (15)

and

v(ω) = −iωζ(ω) − Z(0). (16)

From the Fourier transform of the equation of motion (7),
the frequency domain displacement

ζ(ω) =
X(ω) + f(ω) − iω[m + q(ω)]Z(0) + mŻ(0)

ρgW − ω2[m + q(ω)]
.

(17)
HereX(ω) is the exciting force corresponding toφS, f(ω)
is the Fourier transform ofF (t), and the complex force
coefficient

q(ω) = a(ω) + ib(ω)/ω (18)

wherea andb are respectively the added mass and damp-
ing coefficients.

5 RESONANCES
Although some numerical results for motions resulting
from an incident wave will be presented later, the discus-
sion in this section focuses on radiation problems. In the
time domain the structure is either forced to move by the
application of an applied forceF (t), or given an initial
displacement or velocity and allowed to move freely there-
after.

A type I resonance (see§1) is associated with a simple
pole of the radiation potentialφR. For ε 6= 0, fluid os-
cillations in the time domain described by (12) can arise
from forced oscillations of the structure [3]. In the special
caseε = 0, corresponding to a trapped mode of frequency
ω0, the situation is more complicated and the excitation
of both steady and growing oscillations of the fluid by the
forced oscillations of the structure is possible [3].

A type II resonance (see§1) is associated with the mo-
tion of the structure and corresponds to a pole of the dis-
placementζ given in (17); the location of the pole in the
complexω plane is a solution of

ρgW − ω2[m + q(ω)] = 0. (19)

For realω the peak response is in the vicinity of a solution
for ω of the real part of this equation.

For a floating structure with an internal free surface both
types of resonance can occur and there will be a mutual



influence through the last term in (13). A pole in the radi-
ation potential leads to a corresponding singularity in the
complex force coefficientq so that asω → ω0 − iε

q(ω) =
q−1

ω − (ω0 − iε)
+ q0 + O

(

ω − (ω0 − iε)
)

. (20)

Hereq−1 andq0 are constants and, for smallε at least,q−1

is real and negative to ensure that the damping coefficient
is non-negative [5]. In the absence of an incident wave so
thatX = 0, and iff has no singularities in the vicinity of
the pole inq, then for real frequencies aroundω = ω0 the
peak displacement (17) occurs atω0 and

ζ(ω0) =
iZ(0)

ω0

+ O(ε) as ε → 0 (21)

so that from (16)

v(ω0) = O
(

ε
)

as ε → 0. (22)

Thus, for a type I resonance with small dampingε, v(ω0)
is also small and will much reduce the effects of the pole
in φR. Thus, both the fluid and structural motions will be
dominated by the type II resonance.

In the case of a trapping structure, for whichε = 0, then
v(ω) = O

(

ω − ω0

)

asω → ω0 and the pole inφR is
annulled completely so that a trapped mode cannot be ex-
cited by the motions of a freely-floating body. In addition
there is no pole in the scattering potential atω = ω0 and
a trapped mode cannot be excited by an incident wave [6].
Thus, on the basis of linear theory, there is no mecha-
nism for the excitation of trapped modes by wave inter-
action with a freely-floating trapping structure. Each case
of trapped-mode excitation discussed in [3] involves the
prescription of a structural velocitẏZ(t) that is equivalent
to the application of an external forceF (t) whose Fourier
transformf(ω) has a pole at the trapped-mode frequency
ω = ω0. With such a pole inf , equation (21) no longer
holds, the pole inφR atω = ω0 is not annulled, and hence
a trapped mode is excited.

6 NUMERICAL SIMULATIONS
Presented here are the results of numerical simulations in
two dimensions performed using the time-domain method
described in [3]. Times and frequencies are made non-
dimensional by scaling appropriately by

√

h/g.
The structural geometry corresponding to figures 1–3 is

a pair of closely-spaced half-immersed cylinders each of
radius0.28h and with centres at±0.31h; the forced os-
cillations of this structure are discussed in [3]. The loca-
tion of the pole corresponding to the type I resonance is
given byω0 = 2.17 andε = 0.012 (see [3]), while for the
type II resonance solution of the real part of (19) gives the
estimateω0 = 2.50.

Figures 1 and 2 correspond to the free-motion of the
structure (i.e.F (t) = 0) that results from the initial condi-
tionsZ(0) = 1, Ż(0) = 0; that is the structure is displaced
and released from rest. Figure 1 shows the free-surface el-
evationη at the mid point of the internal free surface and

the structural displacementZ as functions of time. Af-
ter about timet = 15 both motions have settled to a de-
caying oscillation that appears to be dominated by a sin-
gle frequency. This is confirmed by figure 2 which shows
the discrete Fourier transform of the free-surface elevation
shown in figure 1 (|un| is proportional to the amplitude of
the Fourier component with indexn). The peak response
is at the type II resonance while there is no discernible ef-
fect of the type I resonance as is to be expected from the
discussion in§5.

The type I resonance can be excited by an incident wave
on the fixed structure and this is illustrated in figure 3.
The incident wave elevation is a Gaussian packet of plane
waves with a peak frequency atω ≈ 2. The Fourier trans-
form of the signal (not shown) confirms that the oscillation
is at the type I resonant frequencyω0 = 2.17.

The last set of results presented in figure 4 are for a
freely-floating trapping structure subject to the same Gaus-
sian wave packet referred to above. The peak frequency of
the wave packet coincides exactly with the trapped-mode
frequency. The structure is set in motion by the wave and
a slowly decaying oscillation of both the free-surface and
structure remains after the wave has passed (these oscilla-
tions are of small amplitude and are barely discernible on
the scale of figure 4). The discrete Fourier transform of
these time signals (not shown) reveals that the oscillations
result from a type II resonance and there are no measurable
components of the motion at the trapped-mode frequency
as predicted by the arguments of§5.

7 CONCLUSION
A floating structure with a moonpool that is constrained
to move in heave can support two types of resonant mo-
tion. One is associated with oscillations of the internal free
surface and the other with the motion of the structure. It
has been demonstrated that when the structure is released
from rest the structural resonance dominates the response
of both the fluid and structure. For the special case of a
trapping structure the free-surface resonance cannot be ex-
cited at all by the motion of a freely-floating structure.
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Figure 1: Release of two freely-floating half-immersed cylinders from rest: free-surface elevationη at the mid point of the
internal free surface (——) and displacementZ of the structure (– – –).
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Figure 2: Discrete Fourier transform of the free-surface elevation given in figure 1.
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Figure 3: Two fixed half-immersed cylinders subject to an incident wave: free-surface elevationη at the mid point of the
internal free surface (——).

0 20 40 60 80 100
t

-0.2

0

0.2

η,Ζ

Figure 4: A freely-floating trapping structure subject to anincident wave: free-surface elevationη at the mid point of the
internal free surface (——) and displacementZ of the structure (– – –).


