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SUMMARY

Scattering by large finite arrays is of considerable importance in the context of the design of offshore structures
supported by thousands of cylindrical columns. It has long been recognised that one way to approach large
finite array scattering is to analyse the effects of each edge of the array in isolation—in other words to study
arrays with just one edge—and this leads to problems formulated on semi-infinite arrays. Unfortunately,
such problems are difficult to analyse and little work has been done on the subject since the pioneering
studies of Hills & Karp [1] and Millar [2]. As a first step we consider here the case of a semi-infinite row
of periodically-spaced, vertical, circular cylinders extending throughout the water depth and show how the
diffracted field can be efficiently computed.

FORMULATION

We consider water of depth h and under the usual assumptions of linear water wave theory, look for solutions
of Laplace’s equation of the form Φ(x, y, z, t) = Re[φ(x, y) cosh(k(z + h)) exp(−iωt)], where k is the positive
solution to the dispersion relation k tanh kh = ω2/g, ω is the angular frequency, and g is the acceleration
due to gravity. The geometry under consideration is sketched in plan view below:
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We are concerned with the scattering of a plane wave

φinc = ei(βx+αy),

where α = k sinψ and β = k cosψ, by a semi-infinite row of identical rigid circular cylinders of radius a,
located at (x, y) = (ms, 0), m = 0, 1, 2, . . ., where s is the spacing. We will use polar coordinates (rm, θm),
θm ∈ (−π, π], centred on the mth scatterer and defined by

x−ms = rm cos θm, y = rm sin θm

and we will usually write (r, θ) for (r0, θ0). In terms of (rm, θm) the incident wave is

φinc = Imeikrm cos(θm−ψ),

where
Im = eiβms.

It is not difficult to formulate this problem using separation of variables. If we write the total field as
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where Zn = J ′
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n (ka), then the unknowns Amn are solutions to ([3, eqn 2.11])
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p = 0, 1, 2, . . ., m = 0,±1,±2, . . .. This system of equations could, in principle, be solved numerically by
truncation but the infinite sum from j = p+ 1 to infinity converges far too slowly for this to be practicable.
(The terms in this sum decay like j−1/2 exp(ijθ) for some θ.) Instead, we solve for the difference between
the coefficients Apm and those that arise in the much simpler infinite array problem in which the cylinder
array extends to both plus and minus infinity.



Infinite grating

For the infinite grating problem, with cylinders at (ms, 0), m = 0,±1,±2, . . ., we seek a solution of the form
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The periodicity of the geometry and of the incident wave implies that Bmn = ImB
0
n = ImBn, say, and we

only need to solve for Bn. These coefficients are solutions to the infinite system of equations
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where
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The quantities σn are easily evaluated (though not from the above expression). For n = 0 we can use the
formulas given in [4], whereas for n > 0 suitable expressions can be found in [5].

The far field can be determined as follows. If we insert the integral representation
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in which
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and care must be taken over the choice of branch for the arccos function, into (3) and then apply the Poisson
summation formula we get
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Here we have defined the scattering angles ψm by

ψm = arccos(βm/k), βm = β + 2mπ/s.

The only terms which contribute to the far field are those for which |βm| < k, i.e.

−1 < cosψ +
2mπ

ks
< 1.

We then say that m ∈ M and we have 0 < ψm < π. Thus, as y → ±∞, the far field consists of a set of
plane waves propagating in the directions θ = ±ψm:
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Semi-infinite grating

We define a new set of unknowns, Cpm, corresponding to the difference between the infinite and semi-infinite
solutions:

Apm = Cpm + IpBm. (6)

We expect that as p → ∞ (i.e. as we move away from the edge) the coefficients Apm will tend to the values
appropriate to a fully infinite array, and hence that Cpm → 0 as p → ∞. If we substitute from (6) into (2)
and use (4) we get a system of equations for the coefficients Cpm which is the same as (2) except that now
the right-hand side is
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The sum over j is the slowly-convergent series that causes all the problems, but now it does not contain
unknown coefficients and so can be treated analytically. In fact, we have found that
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from which all the necessary sums can be efficiently evaluated.
From (1) and (5) the total field is
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The determination of the asymptotic form of this expression for large kr is quite involved. We use the
formula
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which can be derived using generalized functions, to express the sum over m involving Im as a contour
integral. Stationary phase can then be used to give the far-field form of the potential. We find that

φ ∼ H̃(kr)g(θ) +
∑

m∈M
ψm>|θ|

2 eikr cos(|θ|−ψm)

ks sinψm

∞
∑

n=−∞

(−i)nBnZne
i sgn(θ)nψm , (7)

where H̃(kr) =
√

2/πkr exp(i(kr − 1
4π)) and

g(θ) =

∞
∑

n=−∞

(−i)neinθZn

(

Bn
1 − eiks(cosψ−cos θ)

+

∞
∑

m=0

Cmn e−ikms cos θ

)

.

A number of things are worthy of note. Firstly, the diffracted field takes the form of a circular wave of
‘amplitude’ g(θ) plus a sum of plane waves which propagate in the same directions as for the infinite grating
case. However, unlike in the grating problem, the plane waves do not exist everywhere and the wave making
an angle ψm (resp. −ψm) with the x-axis is only found in the sector 0 < θ < ψm (resp. 0 > θ > −ψm).
Secondly, the coefficients Cmn affect only the circular wave. The plane wave field is determined entirely from
the solution to the infinite grating problem; in fact, where the plane waves exist, their amplitude is precisely as
in the infinite grating problem. Thus it is only the circular wave which causes any computational difficulties.
Thirdly, it is apparent that the amplitude g(θ) of the circular wave becomes infinite as θ approaches one of
the so-called shadow boundaries |θ| = ψp. This is because, in performing the steepest descent analysis we
have explicitly assumed that |θ| 6= ψp, a case which corresponds to a pole of the integrand coinciding with
the appropriate saddle point. Uniform asymptotics valid as θ → ψp can be derived. A lengthy calculation
reveals that near these lines we must add a term
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where ζp =
√

2kr sin 1
2 ||θ| − ψp| and F is the Fresnel integral defined by

F (v) =
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v
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The combination g + g̃ is bounded as θ → ψp for any r, but the limit is different from each side. However,
since F (0) = 1

2

√
π exp(iπ/4), the discontinuity in g + g̃ as θ passes through ψp exactly cancels the extra

plane wave contribution that appears in (7) as the shadow boundary is crossed, thus ensuring that the far
field is continuous.



RESULTS AND DISCUSSION

Typical results that can be obtained are shown below. The figure shows the amplitude of the circular wave,
|g(θ) + g̃(r, θ)|, for the case ka = 0.05, ks = 10, kr = 20, and ψ = π/4. There are three predominant
scattering directions corresponding to ± arccos(1/

√
2−mπ/5), m = 0, 1, 2, i.e. ±π/4, ±0.475π, ±0.685π and

these are indicated by the dashed lines.
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The discontinuities in |g + g̃| are clearly apparent, as are a number of other sharp features. In the related
mathematical problem where we impose φ = 0 on the boundaries of the cylinders and assume that ka � 1
it is possible to show analytically (see [6]) that the amplitude of the circular wave is zero in the directions
which correspond to the scattering angles when the incident wave angle is zero. In this case these are
± arccos(1 −mπ/5), m = 0, 1, 2, 3, i.e. 0, ±0.379π, ±0.583π, and ±0.846π. Reference to the figure shows
that these are precisely the angles at which the spiky behaviour is found, though as yet no analytical reason
for this has been found.

We have assumed throughout that none of the scattering angles are 0 or π. The first case is usually
termed inward resonance and the latter outward resonance. In these cases many of the series that have been
derived above do not converge and a separate analysis must be undertaken. The inward resonance case turns
out to be rather involved, but the scattered field for outward resonance can be easily determined.
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