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ABSTRACT

A new model for simulating the fully-nonlinear generation and propagation of gravity waves is proposed.
This three-dimensional model is based on a fast spectral method known as `High-Order Spectral' (HOS). This
method originally proposed by West et al. [1] and Dommermuth & Yue [2] was limited up to now to simulations
of initially imposed wave �elds, freely evolving in a domain where a double space periodicity condition was
supposed. Here additional potential techniques are employed to calculate forcing terms, making it possible to
reproduce the full generation and propagation process of three-dimensional wave �elds, starting from rest. Two
kinds of previously validated additional potentials are proposed: inner [3] and inlet [4]. The possibilities of our
fully-nonlinear model are illustrated on the interaction of two orthogonal wave trains, and on the focusing of a
directional Pierson-Moskowitz spectrum wave �eld.

INTRODUCTION

In the design and operation of naval and o�shore structures the accurate estimation of hydrodynamic
interaction e�ects represents a major concern. The knowledge of the sea-state and the capability of models
to reproduce it precisely are therefore crucial. Up to now, the potential theory approximation remains best
suitable to numerically reproduce such sea conditions over long time ranges. To that goal, mainly Boundary
Element Models (BEM) have been developed in the last decades. Nonetheless, due to their complexity realistic
sea-states require �ne grid de�nitions. This implies for BEM costly calculations in three dimensions, limiting
the accuracy obtainable. Other much less employed potential methods have also been developed in past years to
that same aim (cf. e.g. [1], [2], [5], [6], [7]), among which in particular spectral techniques that present speci�c
and attractive fast convergence, high accuracy and fast resolution properties. However, those models were not
able up to now to simulate the generation of wave �elds, only their evolution. Here we present a fully-nonlinear
model, able to reproduce the whole wave generation and propagation process, and bene�ting from the spectral
attractive speci�cities. It is also suitable to be used as fast and accurate incident wave simulator in the frame
of combined potential/viscous calculations.

FORMULATION

There is not enough room here to expose the details of the formulation we employ, only its main lines will
thus be recalled. Please refer to [3] and [4] for more information concerning the additional potential generation
solutions we use, and to [8] for a full description of the models.

High-Order Spectral core

The HOS core we have developed is formulated in a parallelepipedic bounded domain with a no-�ux condition
imposed on the vertical boundaries, contrary to the other HOS models (cf e.g. [1], [2] & [5]). Those latter models
are indeed expressed in an open domain with a double space periodicity condition imposed, of which our model
is free. We include also in those `regular' HOS formulations the Dirichlet-Neumann Operators (DNO) (cf. e.g.
Bateman et al. [6]) very similar to HOS in their practical implementation (same number of FFT evaluations,
same quantities evaluated, etc. (cf. [8] for a discussion on the comparison of the two techniques)).

In our bounded domain where the potential satis�es the Laplace equation, the free surface is considered to
be single-valued. The fully-nonlinear free surface boundary conditions (FNFSBCs) can be written in a classical
semi-Lagrangian way. The �rst possibility is then to plot a spectral expansion such as

�(x; y; z; t) =

(Nx;Ny)X
(nx;ny)=(0;0)

Anxny (t)
cosh[knxny (z + 1)]

cosh[knxny ]
ei(knxx+knyy) in D (1)

directly in those FNFSBCs. This leads to the assembling of a system of equations that is solved at each time
step by an iterative scheme (GMRES), to get both the unknown amplitudes Anxny (t) of the natural modes
(nx; ny) of the domain, and the elevations at the NxNy collocation nodes spread on the free surface at its
instantaneous position. It was this `direct method' that we used �rst (cf. [3]).

Alternatively, the FNFSBCs can be written by means of the Zakharov surface potential [9]:
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This way the only remaining non-surfacic quantity is the potential vertical derivative @�=@z. The HOS technique
consists in expanding this last quantity located at the exact free surface position, in Taylor series about the
undisturbed free surface position z = 0. An iterative process can then be settled to obtain @�=@z through that
development, starting from known surface quantities (� and the surface potential �S). This iterative process is
also solved in a pseudo-spectral manner (through expansions like (1)), but this time by means of advantageous
FFTs, bene�ting from evaluations made at the �xed surface z = 0. However, by plotting in the FNFSBCs (3)
the solution obtained for @�=@z out of this iterative process, one keeps the full expression of these FNFSBCs
still at their exact position. The surface quantities, again at this instantaneous position, can next be updated
through the time-marching scheme. This is to say that the HOS technique retains the fully-nonlinear feature

of the solution, despite the Taylor expansion and the following iterative resolution, which is inner and not

correlated to the main resolution. This model is therefore not linked to classical perturbation series expansions.

Additional spectral generation techniques

As we are willing to generate wave �elds, and since our HOS core is formulated in a bounded domain, we
have developed speci�c additional potential solutions, that add forcing terms to the core problem acting as
wave generators. Two techniques have been proposed: the �rst one is inner and consists in adding submerged
singularities into the domain, whose potential engenders waves. The speci�cally designed singularities to that
aim are optimized unsteady spinning dipoles (cf. [3]). The alternative technique is to impose an inlet �ux
condition on a wall of the tank, to simulate the presence of a wavemaker. The additional potential employed
in that case is then calculated by means of another adapted spectral expansion (cf. [4]), allowing to retain the
attractive features of the spectral method.

ILLUSTRATIVE RESULTS

Validation of the model

The model presented in this paper asso-
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Figure 1: Comparison of the model to the steady so-
lution; 2Ax=�x = 8%.

ciates to main components: a non-periodic
HOS resolution core on the one hand, and
additional potential solutions employed to
generate waves on the other hand. The val-
idation of the inner generation by use of op-
timized unsteady spinning dipoles has been
previously realized on target wave packets
reproducing [3], with a spectral core relying
on the direct resolution at the time. The
validity of the inlet generation additional
potential has also been established by ex-
tensive tests made on our model SWEET
(second-order 3D wave tank) relying on that
same technique (cf. e.g. [4]).

Hence, we will here restrict ourselves
to showing an example of test validating
the HOS core, with an inner generation in
present case. It consists in comparing our
model results to the highly accurate spec-
tral steady solution of Rienecker & Fenton
[10], which provides fully-nonlinear wave pro-
�les of regular waves up to the Stokes' limit, based on a Newton's iterative procedure. In �gure 1, one can
notice the very good agreement between the steady pro�le and our unsteady calculation, and this already with
moderated slope order (m = 3). The steepness shown is 2Ax=�x = 8%.

Nonlinear interaction of two orthogonal wave trains

In order to further illustrate the possibilities of the model, a nonlinear interaction case of two orthogonal
two-dimensional wave trains progressing respectively along the x- and y-axis has been selected. Each of them
is generated as a regular wave train modulated by the smooth time window function f(t) de�ned as

f(t) =

�
1� explog 0:1

(t�Ti)
2T

� 
1� explog 0:1

(Tf�t)
2T

!
if Ti � t � Tf and f(t) = 0 else (4)



where T is the wave period. At the
time they are generated, these win-

Figure 2: Fully-nonlinear interaction of two orthogonal
wave trains.

dowed regular wave trains have for
parameters: wavelength �x = 0:5,
steepness 2Ax=�x = 7:5% and win-
dow bounds [Tix = 0; Tfx = 7Tx]
along x-axis ; and respectively �y =
0:35, 2Ay=�y = 6:5%, [Tiy = 6Ty;
Tfy = 13Ty] along y-axis. The gen-
eration is achieved by means of two
orthogonal optimized unsteady spin-
ning dipoles located at (x1d = 1:5;
z1d = �0:25), and (x2d = 0:75; z2d =
�0:25) in the (Lx = 10) � (Ly =
6) � 1 domain. The �gure 2 shows
two snapshots of the free surface, at
an early stage of the interaction, and
later when a sharp peak occurs. To
cast more light on the interaction it-
self, the free surface elevation is re-
corded at three locations in the do-
main: �rst at the place where the
high peak lies in the bottom view
(probe 2), and also at the same coor-
dinates on the domain borders (pro-
bes 1 and 3) where only one of each
of the two wave trains is present all
along its propagation. It must be no-
ticed that the signals measured on
those probes 1 and 3 already result
from the fully-nonlinear behavior of
the propagation. However, the dif-
ference clearly visible in �gure 3, be-
tween the superposition of these two
nonlinear signals and the actually mea-
sured peak at probe 2, demonstrates
the additional nonlinear interaction

of those two wave trains, as expected.

Focusing of a directional spectrum wave �eld in a 3D
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Figure 3: Nonlinear interaction
e�ects: elevations at the probes.

wave tank

Another illustration of the capabilities of our model is shown
in �gure 4 where the focusing of a directional wave �eld is simu-
lated. The chosen spectrum is a Piersen-Moskowitz one, of sig-
ni�cant height Hs = 0:053m and peak frequency f = 0:4Hz.
The directional spreading is governed by a classical distribu-
tion: cos2s

�
���0
2

�
where �0(= 0) is the main angle and s = 10.

The focusing itself is obtained by imposing equal phases of all
directional components, at (x = 20m; y = 15m; t = 35s) in
the ECN wave tank (50m� 30m� 5m). Here the generation is
realized by means of an inlet �ux condition corresponding to a
serpent-type wavemaker.

The two snapshots of �gure 4 illustrate the focusing process,
�rst during its development (on the left), and second when the
focused peak actually occurs (on the right). One can notice that
this peak has shifted to (x = 22:07m; y = 15m; t = 35:48s)

with respect to the prescribed data, highlighting again the fully-nonlinear nature of the simulation. Another
proof of the presence of strong nonlinearities is to be found in the maximum local slope measured on that peak,
that exceeds 60%.

Those di�erent three-dimensional results are obtained in a few hours on a 1.7GHz PC. And the numerical cost



Figure 4: Fully-nonlinear focusing of a generated directional wave �eld of Pierson-Moskowitz spec-
trum.

increases almost linearly (O(NxNy log2[NxNy])) with the total number of modes/nodes retained: 4s calculation
per time step in the focusing case where 16700 modes were employed, and 18s calculation per time step in the
interaction case with 66000 modes.

CONCLUSION

A new three-dimensional model is proposed based on a fast spectral method (HOS). This fully-nonlinear
model is able not only to simulate the nonlinear evolution of periodic existing wave patterns as already existing
ones, but to reproduce the whole process of generation from rest and propagation of any non-breaking wave
�eld. Validation is made by conclusive comparison with a highly accurate solution for fully-nonlinear regular
wave pro�les. Illustrative results include the nonlinear interaction of two orthogonal wave packets, and the
focusing of a Pierson-Moskowitz spectrum wave �eld. As future works, further comparisons of these results
to other methods, analytical or numerical, will be achieved, as well as to tests to be realized in the new ECN
wake tank. Wave train interaction will as well be studied more in details, and results discussed with regards
to the description by Longuet-Higgins [11] of such interactions in two dimensions. As for the model itself, two
lines of progress will be followed in near future. The �rst one will consist in attempting to extend our inner
optimized unsteady dipole technique to any fully three-dimensional generation. Secondly, higher-order inlet
conditions will be implemented, so as to be able to reproduce the actual fully-nonlinear condition found on
physical wavemakers.
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