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The problem of sudden vertical motion of a floating
wedge was studied by Iafrati & Korobkin (2003) within
the potential theory of incompressible liquid flow. Com-
bined initial asymptotics of the generated flow has been
derived and analyzed in details. The flow region was di-
vided into the main flow region and small vicinities of the
intersection points between the wedge side walls and the
liquid free surface. The inner flow close to the intersection
points was obtained by means of combination of numerical
and analytical methods. It was shown that the inner flow
is non-linear and self-similar in the leading order during
the initial stage of the impact. Close to the intersection
points the free surface is turned over and the jets are orig-
inated. It should be noted that the free surface shape was
numerically calculated as a part of the solution. The anal-
ysis of the non-linear boundary-value problem in the inner
region revealed that this problem cannot describe the flow
in the jet region and, in particular, cannot provide esti-
mate of the jet length at the initial stage of the impact.
Asymptotic analysis of the inner solution showed that the
jet is predicted to be of infinite length with the jet thick-
ness rapidly decreasing with the distance from the inter-
section points but with the flow velocity in the jet growing
linearly with the distance. This implies that the first-order
solution derived by Iafrati & Korobkin (2003) is not uni-
formly valid and should be improved in the jet region. The
flow in the jet region caused by a floating body impact was
not studied before. We do not expect that the details of
the flow in thin jet region strongly affect either the pres-
sure distribution in the main flow region or the free surface
shape outside the jet region. Moreover, these thin jets are
expected to be disintegrated into clouds of droplets owing
to instability of the high-speed jets and, therefore, cannot
be detected in experiments. However, formally speaking,
the analysis by Iafrati & Korobkin (2003), which does not
account for instability mechanisms, is incomplete because
it does not contain explanations of the origin of the jets
and gives no idea how the jet length can be estimated,
which makes confusions in practical implications of the
derived initial asymptotics. These subjects are covered in
the present report.

It should be noted that infinite jets within the incom-
pressible liquid model are well known in the theory of wa-
ter entry problems (Wilson, 1989). Due to physical rea-
sons - the liquid particles in the jets move inertially and
independently, the feedback of the jet flow to the flow in
the main region can be well neglected - the jet flow was not
studied for long time. Analysis of such jets was initiated
by attempts to calculate kinetic energy evacuated from the
main flow region with these jets (Korobkin, 1994). Sur-

prisingly, it was found that the jet energy is comparable
with that in the main bulk of the liquid. Later on, the
better method of estimating the jet energy was suggested
(Molin el al., 1996), which does not require details of the
flow in the jet region. Nevertheless, in the problem of blunt
body impact onto a liquid free surface Korobkin (1997) ar-
gued that the compressibility effects should be taken into
account to obtain both the shape and the length of the
spray jet. Calculations have been performed for the entry
of a parabolic contour at constant velocity. This idea is
used in the present report to estimate the length of the jet
produced by impact of a floating wedge.
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Figure 1.

The jetting by a floating wedge impact starts at the
very early stage, when the compressibility effects must be
taken into account and the disturbed part of the liquid is
localized near the body surface. In Figure 1 the wave pat-
tern at this stage of the impact is shown: BF and B′F ′

are the shock fronts, CFA, C ′F ′A′ and E′B′GBE are the
fronts of the relief waves. If the impact velocity V is much
smaller than the sound speed c0 in the liquid at rest, the
fronts of the relief waves are approximately circular with
the radius being equal to c0t′, where t′ is dimensional time.
The distinguished stage lasts until points C and E meet
each other, which happens at t′ = t∗, t∗ = |DC|/(2c0).
During this stage the free surface is already deformed and
the jet region is formed (these deformations are not shown
in the figure). The liquid particles, which entered the jet
region during this stage, will form the jet head at any
following time instant. Important feature of the stage
is that the flows in regions BFCE and B′F ′C ′E′ are
one-dimensional and the flows in regions CFA, C ′F ′A′

and E′B′GBE are self-similar, which highly simplifies the
analysis. Within the acoustic approximation the pressure
in BFCE is constant p′ = ρ`0c0Vi and the flow veloc-
ity is equal to the normal velocity of the wedge surface
Vi = V cos γ, ρ`0 is the density of the liquid at rest and γ
is the wedge deadrise angle. The flow in E′B′GBE is not
considered here.



We consider the flow in CFA, where the jet is initi-
ated, within the moving coordinate system xPy attached
to the wedge wall DP . Both the flow and wave patterns
are shown in Figure 2. In the moving coordinates the
flow is equivalent to that due to the liquid wedge impact
onto the rigid plate and is self-similar. We shall deter-
mine the uniformly valid asymptotics of the liquid flow
and the pressure distribution in the region CFALP with
the Mach number M = Vi/c0 being a small parameter of
the problem, and evaluate the jet length Ljet = |PL|.
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Figure 2: Sketch and notation used for the inner
problem.

Formulation of the problem

In the coordinate system xPy the compressible flow
in region CFA is self-similar. The velocity component
u′(x′, y′, t′) along the rigid surface, the component v′ nor-
mal to the surface, the hydrodynamic pressure p′ and the
liquid density ρ′`(x

′, y′, t′) have the forms

u′ = ViU(ξ, η), v′ = ViV (ξ, η), p′ = ρ`0Vic0P (ξ, η),

ρ′` = ρ`0R`(ξ, η), ξ = x′/(c0t′), η = y′/(c0t′).

Prime stands for dimensional variables. The new unknown
functions U(ξ, η), V (ξ, η), P (ξ, η) and R`(ξ, η) satisfy the
following equations in the flow domain CFALP

L < U >= R−1
` Pξ, L < V >= R−1

` Pη, (1)

L < P >= (1+MnP )(Uξ+Vη), R` = (1+MnP )
1
n , (2)

L = (ξ −MU)∂/∂ξ + (η −MV )∂/∂η, (3)

the boundary conditions

P = P1D(M), U = 0, V = 0 (CF ), (4)

P = 0, U = 0, V = −1 (FA), (5)

V = 0 (CL), (6)

P = 0 (AL), (7)

V [1 +Mh′(η)] = U tan γ − 1− h(η) + ηh′(η), (8)

where n is a characteristic of the liquid (n = 7.15 for pure
water), P1D(M) is the one-dimensional pressure behind
the shock front FB, the free surface shape is described by
the equation

ξ tan γ = η +Mh(η) +M. (9)

The solution of the boundary-value problem (1) - (8) de-
pends on the only parameter M , which is small in the

present analysis. Assuming that the unknown functions
and their first derivatives have finite limits as M → 0, we
arrive at the acoustic approximation. The acoustic solu-
tion has to be considered as the leading-order outer solu-
tion of the original problem and has to be verified against
the basic assumption.

Acoustic approximation

The limits of the unknown functions asM → 0 are denoted
with the subscript (0). It should be noted that P1D(M)→
1 and

(AL)→ {0 < r < 1, θ̂ = γ},

(AF )→ {r = 1, γ < θ̂ < π/2},

(CF )→ {r = 1, π/2 < θ̂ < π}

as M → 0, where ξ = r cos θ̂ and η = r sin θ̂. In the
leading order the outer flow is potential

U (0) = ϕξ, V (0) = ϕη, P (0) = ξϕξ + ηϕη − ϕ (10)

but the velocity potential ϕ(ξ, η) is not an harmonic func-
tion, it satisfies the equation

(1− ξ2)ϕξξ − 2ξηϕξη + (1− η2)ϕηη = 0.

However, the acoustic pressure P (0)(ξ, η) is harmonic
function within the deformed coordinates R and θ̂, where
the new radial coordinate R is connected with the orig-
inal radial coordinate r by Chaplygin’s transform r =
2R/(1 + R2). This transform has been used by Dobro-
vol’skaya (1961) in the self-similar problem of wedge en-
tering acoustic half-plane. Within the new coordinates R
and θ̂ the acoustic pressure P (0)(R, θ̂) is governed by the
boundary-value problem

R2P
(0)
RR +RP

(0)
R + P

(0)

θ̂θ̂
= 0 (0 < R < 1, γ < θ̂ < π),

P (0) = 0 (θ̂ = γ), P
(0)

θ̂
= 0 (θ̂ = π),

P (0) = 1 (π/2 < θ̂ < π), P (0) = 0 (γ < θ̂ < π/2),

solution of which has the form

P (0) =
2
β

∞∑
n=0

Rσn

σn
cos[σn(π/2− γ)] sin[σn(θ̂ − γ)], (11)

where β = π − γ, σn = σ0(2n+ 1) and σ0 = π/(2β).
The velocity potential is recovered with the help of

equations (10), (11) and the boundary conditions (4) -
(6). In a small vicinity of the intersection point, r � 1,
the velocity potential behaves like

ϕ ' −Arσ0 cos(σ0θ) , (12)

where θ = π− θ̂ and A = 22−σ0 sin[π2/(4β)]/[π(1−σ0)]. It
is important to notice that the asymptotic formula (12) is
similar to the corresponding formula derived by Iafrati &
Korobkin (2003) within the incompressible liquid model.
The peculiarity of the present case affects only the for-
mula for the factor A. Here 1

2 < σ0 < 1, which implies
that the acoustic solution predicts unbounded velocity of



the flow close to the intersection point. In order to obtain
uniformly valid description of the flow during the stage un-
der consideration, an ’inner’ solution must be considered
within stretched variables. Since there is the only small
parameter, M , in the problem, the stretching should be
dependent on this parameter.

Non-linear inner flow

Asymptotic analysis provides that the stretched variables
in a small vicinity of the intersection point P have to be
introduced as

r = (MA)
1

2−σ0 ρ, U = M−
1−σ0
2−σ0 A

1
2−σ0 ũ(ρ, θ),

V = M−
1−σ0
2−σ0 A

1
2−σ0 ṽ(ρ, θ), (13)

P = M
σ0

2−σ0 A
2

2−σ0 p̃(ρ, θ),

h = M−
1−σ0
2−σ0 A

1
2−σ0 ζ(µ)− 1,

ξ = (MA)
1

2−σ0 λ, η = (MA)
1

2−σ0 µ,

where the new unknown functions ũ(ρ, θ), ṽ(ρ, θ), p̃(ρ, θ)
and ζ(µ) are assumed bounded together with their first
derivatives. The second equation in (2) shows that R` =
1 + O[M

2
2−σ0 ] as M → 0 close to the intersection point,

which implies that in the leading order the inner flow can
be treated as incompressible. The left-hand side of the
first equation in (2) is of the order of O[M−1] but the left-
hand side is of the order O[M

σ0
2−σ0 ] and tends to zero as

M → 0. Therefore,

ũλ + ṽµ = O[M
2

2−σ0 ] (14)

and equations (1) provide

L̃ < ũ >= p̃λ +O[M
2

2−σ0 ], L̃ < ṽ >= p̃µ +O[M
2

2−σ0 ],

L̃ = (λ− ũ)∂/∂λ+ (µ− ṽ)∂/∂µ. (15)

Equations (14) and (15) show that in the leading order
the inner flow is potential with accuracy up to O[M

2
2−σ0 ]

as M → 0. The inner velocity potential φ(λ, µ) satisfies
the Laplace equation

∆φ = 0 (in the flow region), (16)

ũ = φλ, ṽ = φµ,

p̃ = λφλ + µφµ − φ−
1
2

(φ2
λ + φ2

µ).

The boundary conditions for equation (16) are

φµ = 0 (µ = 0, λ < λj), (17)

λφλ + µφµ − φ =
1
2

(φ2
λ + φ2

µ) (AL), (18)

φµ(1 + ζ ′) = φλ tan γ − ζ(µ) + µζ ′(µ) (AL), (19)

where the free surface position is described by the equation

(AL) λ tan γ = µ+ ζ(µ) (20)

and λj is the jet length in the stretched coordinates. In the
original coordinates the jet length Ljet(t′) grows linearly
with time as

Ljet(t′) = M−
1−σ0
2−σ0 A

1
2−σ0 λj(Vit′). (21)

The quantity λj has to be determined as a part of the
solution of the problem for the inner velocity potential
φ(λ, µ). The inner flow has to be matched to the acoustic
flow in the main flow region. Asymptotic formula (12) pro-
vides the far field condition for unknown velocity potential
φ(λ, µ)

φ ∼ −ρσ0 cos(σ0θ) (ρ→∞). (22)

It is convenient to introduce the modified velocity po-
tential S = φ− 1

2ρ
2, which satisfies the following equations

∆S = −2 in the flow region, (23)

Sn = 0 (AL and µ = 0), (24)

S2
τ + 2S = 0 (AL), (25)

S ' −1
2
ρ2 − ρσ0 cos(σ0θ) (ρ→∞), (26)

where Sn and Sτ are the normal and tangential derivatives
of the unknown function S(λ, µ) on the liquid boundary.
Equations (23) - (26) follow from (16) - (19) and (22),
respectively. The boundary-value problem (23) - (26) is
similar to the corresponding inner problem within the in-
compressible liquid model except of the dynamic bound-
ary condition (25), which is much simpler for compressible
liquid. This condition can be integrated along the free sur-
face with the result

S = −1
2

(τ + C)2, (27)

where τ is the curvilinear coordinate along the free surface
and C is an arbitrary constant of integration. The local
analysis of the flow close to the jet tip shows that the
distribution of the modified potential (27) matches the
boundary condition (24) at the jet tip with finite jet angle
if and only if C = 0 and τ is measured from the point L
towards the far field. Equation (27) implies that the inner
velocity potential along the free surface is known

φ =
1
2

[ρ2 − τ2] (28)

once the free surface shape has been obtained.
The inner problem (23) - (26) is non-linear and still

complicated. Moreover, the shape of the free surface is
unknown in advance and has to be determined together
with the liquid flow. This can be only done by numerical
methods. In order to reduce the size of the computational
domain required to solve the inner problem (23) - (26), the
asymptotic behavior of the potential in the far field is esti-
mated. The free-surface shape in the far field is described
by the equation θ = θ̃(ρ), where θ̃(ρ)→ β as ρ→∞. It is
useful to introduce the new angular variable α = θβ/θ̃(ρ)
so that the fluid domain in the far field corresponds to
0 ≤ α ≤ β. Three cases are distinguished: (i) γ > π/4,



(ii) γ = π/4 and (iii) γ < π/4. The case γ > π/4 is only
considered here. We obtain

θ̃(ρ) = β +
σ0

2− σ0
ρσ0−2 + θ2(ρ), (29)

S̄(ρ, α) = −1
2
ρ2 − ρσ0 cos(σ0α) +

σ2
0

(2− σ0)
×{

α

β
sin(σ0α) +

[4− 3σ0

3− 2σ0

]cos[2(1− σ0)α]
2 cos(2γ)

}
ρ2σ0−2 (30)

+S̄2(ρ, α),

S̄(ρ, β) = −1
2
ρ2 +

σ2
0

2(3− 2σ0)
ρ2σ0−2 + S̄2(ρ, β), (31)

where the products S̄2(ρ, α)ρ2(1−σ0) and θ2(ρ)ρ2−σ0 tend
to zero as ρ→∞.

For the wedge deadrise angle of 60 degrees, γ = π/3,
the modified velocity potential in the far field is given in
parametric form as

θ = α
{

1 +
9

10π
ρ−

5
4 + ...

}
(0 < α <

2
3
π),

S(ρ, θ) = −1
2
ρ2 − ρ 3

4 cos(3α/4)

+
9
20

{
3α
2π

sin(3α/4)− 7
6

cos(α/2)
}
ρ−

1
2 + ......,

S(ρ, θ̃(ρ)) = −1
2
ρ2 +

3
16
ρ−

1
2 + ......,

Numerical solution

The boundary value problem (23) - (26) is solved with
the help of a pseudo-time stepping iterative procedure sim-
ilar to that developed in Iafrati & Korobkin (2003). At
each iteration a boundary integral representation for the
velocity potential φ is used. The velocity potential is as-
signed along the far field boundary by (29) and (30) and
its normal derivative is assigned along the wetted portion
of the body contour. Along the free surface the velocity
potential is assigned according to equation (27) where the
curvilinear coordinate τ is evaluated from the free surface
shape obtained at the end of the previous iteration.

Taking the limit of the boundary integral represen-
tation on the fluid domain boundary, a boundary inte-
gral equation of mixed kind is obtained solution of which,
achieved by using a zero order panel method, provides the
velocity potential along the free surface and its normal
derivative along the far field boundary and the free sur-
face. In this way ∂S/∂n is derived as ∂φ/∂n−ρρn and then
is verified to which extent the kinematic constraint (24) is
satisfied. Then, the free surface is moved in a pseudo-
time stepping fashion by using (∂φ/∂τ)τ +(∂S/∂n)n as a
velocity field. This velocity field ensures that once conver-
gence is achieved, that is ∂S/∂n = 0 along the free surface,
a further update only shifts the free surface panels along
it while left unchanged the free surface profile. Once the
free surface shape has been updated, the curvilinear coor-
dinate along it is reinitialized thus allowing to recompute
the velocity potential along it through equation (27).

The iterative procedure is started by using equations
(29) and (31) to assign an initial guess for the free surface
and for the velocity potential along it, respectively.

In order to reduce the computational effort needed to
accurately describe the flow in the thin jet layer, a shallow
water model similar to that adopted in Battistin & Iafrati
(2004) has been adopted. In this model the velocity po-
tential within the jet layer is written as an expansion in
terms of the local jet thickness and is matched with the
solution provided by the boundary element solution. The
matching is enforced in a region where the jet thickness is
still large compared with the local panel size. This expan-
sion of the velocity potential allows to derive the velocity
field for the free surface panels lying within the modeled
part of the jet.

In Figure 3 the free surface shape about the jet root
for γ = π/3. From this result the jet length can be also
evaluated as λj ' 1.68.
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Figure 3: Solution for γ = π/3. On left the final free
surface shape is shown. On right the convergence his-
tory of λj is drawn.
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