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ABSTRACT: The impact of an elastic cracked plate of finite length that is dropped against a liquid free
surface is analyzed. The problem is considered within the Wagner theory. The liquid flow is two-dimentional,
symmetric and potential. The presence of a crack is modelled with the help of a torsional linear spring. The
analysis is based on the normal mode method with hydroelastic behaviour of the plate being of the main
interest. The numerical results demonstrate that the presence of a crack has important effects on bending
stresses and deflections, both at the impact stage and at the penetration stage, and may significantly change
the life time of a ship structure.

1 INTRODUCTION

During the process exploitation floating structures may
suffer from severe wave impact. In spite of the fact
that the water impact is an event of a short duration,
it is accompanied by high hydrodynamic loads which
may damage full construction, especially in the case
of periodic wave impact loads. Moreover, in reality
the structures contain initially presented small flaws
(cracks, cavities and inclusions) which can absorb a
part of the impact energy during fluid-structure inter-
action and grow with time. This analysis is mainly
motivated by ship hydrodynamics, where wave impact
onto the wetdeck of a catamaran can be very severe
and may lead to local structural damage.

Here the plane unsteady problem of wave impact
upon a cracked elastic beam of finite length is con-
sidered. Specifically, we consider a wave crest that
touches the beam at its central point, where a crack
is located, and assume that the liquid free surface hits
the beam from below with a constant velocity. We de-
termine both the deflection of the beam and the stress
distribution in the beam, and investigate the effects
the length of the crack and other impact parameters
(notably, radius of curvature of the wave and impact
velocity).

The method of matched asymptotic expansions is
used to account for the effect of the crack. According to
this method, the beam is divided into an inner region
that surrounds the crack, and an outer region where
transverse variations of the stresses are not important
and the plate is modelled as an elementary homoge-
neous beam. The presence of a crack is modelled with
the help of a linear spring.

Analysis of the impact process is based on hydroe-
lasticity, in which the coupled hydrodynamics and struc-
tural dynamics problems are solved simultaneously.
Even after all possible simplifications at the impact
stage the problem remains nonlinear, because the di-
mension of the contact region is unknown in advance
and has to be determined together with the liquid flow
and the beam deflection.

The problem is analyzed using the normal mode
method. With appropriate modifications, this method
leads to an infinite system of ordinary differential equa-
tions with respect to principal coordinates of the beam
deflection and dimensions of the contact region. In
this work, the cracked-beam elastic reaction is of main
interest, and the numerical method is accordingly de-

signed to permit effective evaluation of the elastic
(rather than the hydrodynamic) characteristics.

The numerical results demonstrate that the pres-
ence of a crack has important effects on bending stresses
and deflections, both at the impact stage and at the
penetration stage, and may significantly change the life
time of a ship structure.

2 STATEMENT OF THE PROBLEM

The plane unsteady problem of wave impact upon a
cracked elastic beam of finite length is considered. Liq-
uid is supposed to be ideal and incompressible. Initially
(t′ = 0) a wave crest touches the beam at its central
point. Then the liquid starts to move up with a con-
stant velocity V . The initial contact point is taken
as the origin of the Cartesian coordinate system x′Oy′

(dimensional variables are denoted by a prime). The
curve y′ = −x′2/2R corresponds to the liquid free sur-
face at t′ = 0. This curve describes the shape of the
wave crest with radius of the curvature R. The plate is
supposed to be cracked at the central point, so the flow
caused by the plate impact is symmetric with respect
to the line x′ = 0 (see Figure 1).

Figure 1.

In order to model the cracked beam behaviour, the
method of matched asymptotic expansions is used. Ac-
cording to this method, the beam is divided into the
’inner’ region which surrounds the crack, and the ’outer’
region, where the transverse variation of the stresses is
not important and the plate is modeled by homoge-
neous beam. In the framework of the linear theory the
presence of a crack is modeled with the help of a tor-
sional spring (see Figure 2). The stiffness KT of the
equivalent torsional spring for a single-sided crack is



assumed known as a function of the beam parameters
and the crack length a. Non-dimensional stiffness kT =
KTL/EJ is presented in Rizos at all (1990) and de-
picted in Figure 3. The solution for the beam, which is
divided by the torsional spring into two parts, provides
the bending stresses outside the crack region. This so-
lution together with the results by Bueckner (1960)
makes it possible to evaluate the stress distribution
near the crack. This problem is not considered here.

Figure 2.

Figure 3.

3 MATHEMATICAL FORMULATION

Non-dimensional variables are used below. The beam
length L is taken as the length scale and the impact ve-
locity V as the velocity scale of liquid particles.
L2/(RV ) is taken as the time scale, L2/R as the dis-
placement scale, ρV 2(R/L) as the pressure scale, where
ρ is the liquid density.

The original equation of liquid flow, the bound-
ary and initial conditions and the Euler beam equa-
tion, which are written in the non-dimensional vari-
ables, contain three parameters α = MB/(ρL), β =
(EJ)/(ρLR2V 2) and kT = KTL/EJ . Here MB is the
beam mass per unit length, E is the elasticity modu-
lus, J = h3/12 is the inertia momentum of the beam
cross-section, h is a thickness of the beam, kT is the
dimensionless local flexibility coefficient, KT is spring
stiffness.

The plane and potential flow generated by the plate
penetration and the plate behaviour are described by
the velocity potential ϕ(x, y, t) and the beam deflection
w(x, t) which satisfy the following equations

ϕxx + ϕyy = 0 (y < 0), (1)

ϕy = −1 + wt(x, t) (y = 0, |x| < c(t)), (2)

ϕ = 0 (y = 0, |x| > c(t)), (3)

ϕ→ 0 (x2 + y2 → ∞), (4)

p(x, y, t) = −ϕt(x, y, t), (5)

α
∂2w

∂t2
+ β

∂4w

∂x4
= p(x, 0, t) (|x| < 1, t > 0), (6)

w = 0, wxx = 0 (x = ±1, t > 0), (7)

w = wt = 0 (|x| < 1, t = 0). (8)

The presence of the crack is described by conditions

w(−0) = w(+0), wxx(−0) = wxx(+0), wxxx = 0,

wxx − 2kTwx = 0 (x = 0, t > 0). (9)

The bending stress distribution σ(x, t) is given in
the dimensionless variables as σ(x, t) = wxx(x, t), with
its scale Eh/(2R). The positions of the contact points
(liquid-beam-air) are described in the symmetrical case
by the only function c(t). Despite the fact that both
the equations of motion and the boundary conditions
are linearized, the problem remains nonlinear as c(t) is
unknown.

The formulation of the problem (1) - (9) is not com-
plete. It must be added by an equation for the dimen-
sion of the contact region. Usually the equation derived
by Wagner (1932) is used, but this equation is difficult
to incorporate into a numerical scheme. Here the equa-
tion suggested by Korobkin (1996) is used. The equa-
tion is, in fact, a modification of the classical Wagner
condition. It has the form

∫ π/2

0

yb[c(t) sin θ, t]dθ = 0, (10)

where the function yb(x, t) describes the shape of the
beam with respect to the initial position of the free
surface. In the present case, yb(x, t) = x2/2−t+w(x, t),
and equation (10) gives

t =
1

4
c2 +

2

π

∫ π/2

0

w[c(t) sin θ, t]dθ. (11)

The hydrodynamic part (1) - (5), the structural
part (6) - (9) and the geometrical part (10) of the
Wagner problem are closely connected to each other
and have to be treated simultaneously in general case.

Wagner problem (1) - (10) is solved with the help
of the normal mode method.

4 NORMAL MODE METHOD

Within this method the beam deflection w(x, t) is sought
in the form

w(x, t) =

∞
∑

n=1

an(t)ψn(x), (12)

where eigenfunctions ψn(x) represent the eigen modes
of simply supported beam - so called ’dry’ modes. In
the case of the cracked beam they are given as

ψn(x) = An[sinλn(|x| − 1) + sinhλn(|x| − 1)
cosλn

coshλn
],

An =

(

1 −
cos2 λn

cosh2 λn

+
sin 2λn

2λn
−

tanhλn cos2 λn

λn

)−1/2

λn are the solutions of the equation 4kT = λn(tanhλn−
tanλn). It is convenient to take the principal coordi-
nates an(t) of the beam deflection as the new unknown
functions and to express other quantities with their
help Khabakhpasheva & Korobkin (1997).

As a result, we arrive at the infinite system of ordi-
nary differential equations with respect to the principal
coordinates ~a = (a1, a2, a3, ...)

T and auxiliary vector-
function ~v = (v1, v2, v3, ...)

T :

d~a

dt
= (αI + S)−1(βD~v + ~f), (13)



d~v

dt
= −~a, (14)

where I is the unit matrix andD is the diagonal matrix,
D = diag{λ4

1
, λ4

2
, λ4

3
, ...},

fm(c) =

∫ c

−c

√

c2 − x2ψm(x) dx,

Snm(c) =

∫ c

−c

ϕn(x, 0, c)ψm(x) dx.

Here ϕn(x, y, c) is a harmonic in the lower half-plane
function, which satisfies equations (1)-(4) with the right
part of equation (2) being replaced by the function
ψn(x). Integrals fn(c) have the form:

fn(c) =
Anπc cosλn

λn
[H1(λnc) − J1(λnc) tanλn+

+L1(λnc) − I1(λnc) tanhλn] .

Here and below H0(z) and H1(z) are the zero- and
first-order Struve functions, L0(z) and L1(z) are zero-
and first-order modify Struve function, J0(z) and J1(z)
are the zero- and first-order Bessel functions and I0(z)
and I1(z) are the zero- and first-order modify Bessel
function.

The integrals Snm(c) were evaluated earlier in the
case ψn(x) = cos(µnx), µn = π(n − 1

2
), which corre-

sponds to the problem of wave impact onto the center
of a homogeneous elastic plate (Korobkin 1998). The
corresponding functions which are denoted by S̃nm(c)
below, are given as

S̃nm(c) =
πc

µ2
n − µ2

m

[µnJ0(µmc)J1(µnc)−

− µmJ0(µnc)J1(µmc)] (n 6= m),

S̃nn(c) =
π

2
c2

[

J2

0
(µnc) + J2

1
(µnc)

]

.

In order to evaluate the integrals Snm(c) in the problem
under consideration, we use the expansion

ψm(x) =

∞
∑

n=1

Cnm cos(µnx), (|x| < 1, n ≥ 1).

It is worth to notice that the matrix C with the ele-
ments Cnm, where n,m = 1, 2, .., is orthogonal, which
means that det(C) = 1 and C−1 = C∗. We find

Cnm(c) = Am

[

2λm cosλm

λ2
m − µ2

n

−
2λm cosλm

λ2
m + µ2

n

]

.

The right-hand side of system (13) and (14) de-
pends on ~a, ~v and c but not on the time t, which is
why it is convenient to take the quantity c as a new in-
dependent variable (0 ≤ c ≤ 1) instead of time t. Time
t is the function of c now, t = t(c). This substitution
is justified under the condition dc/dt > 0, which is the
main assumption within the Wagner approach. Differ-
ential equation for the unknown function t(c) follows
from equation (11) after its differentiation with respect
to c and taking into account expansion (12)

dt

dc
= Q(c,~a, ~̇a), (15)

Q(c,~a, ~̇a) =
c/2 + 2/π

∫ π/2

0
wx[c sin θ, t] sin θdθ

π/2 −
∫ π/2

0
wt[c sin θ, t]dθ

=

=
2/π + (~a, ~Γ1)

1 − (~̇a, ~Γ0)
,

Γ0n = An cos(λn) [H0(λnc) − J0(λnc) tanλn+

+L0(λnc) − I0(λnc) tanhλn] ,

Γ1n = Anλn cos(λn)

[

4

π
+ J1(λnc) tanλn−

− H1(λnc) + L1(λnc) − I1(λnc) tanhλn] .

Multiplying equations of system (13), (14) by dt/dc
and taking (15) into account, we find

d~a

dc
= ~F (c, ~v)Q(c,~a, ~F (c, ~v)), (16)

d~v

dc
= −~a Q(c,~a, ~F (c, ~v)),

where ~F (c, ~v) = (αI + S(c))−1(βD~v + ~f(c)) and ~̇a =
~F (c, ~v).

The initial conditions for the system of ordinary
differential equations (15)-(16) are

~a = 0, ~v = 0, t = 0 (c = 0). (17)

The initial-value problem (15)-(17) is suitable for
numerical simulations of hydroelastic behavior of the
wave impact on the cracked plate.

5 NUMERICAL RESULTS AND DISCUSSION

The initial-value problem (15)-(17) is solved numeri-
cally by the fourth-order Runge-Kutta method with
uniform step ∆c. The condition that the numerical
scheme is stable was derived. The step ∆c has to de-
crease as O(N−2) if the number of modes N taken into
account increases. Calculations were performed for the
case L = 0.5m, R = 10m, h = 2cm, E = 21·1010H/m

2
,

V = 3m/s, % = 1000kg/m3, %b = 7850kg/m3 where %b

is the beam density. This gives α = 0.314, β = 0.311.
The number of ’dry’ modes N taken into account is
equal to 5. Numerical results for homogeneous plate
are compared with those for cracked plate (a/h = 0.5
and a/h = 0.8) and for almost broken plate (a/h =
0.99).

Analysis of numerical results obtained for different
lengths of the crack gives:

• The evolution in time of both the contact point c(t)
and its velocity dc/dt are weakly dependent of the crack
length and are almost the same as for a homogeneous
beam without a crack (see Korobkin (1998)).

• At the end of the impact stage, when the plate is
totally wetted, the maximum deflection occurs at the
plate midpoint. The maximum deflection is not a mono-
tonic function of the crack length (Fig. 4, 5). However
for the almost broken plate (a/h = 0.99), the maximum
deflection is greater than for the corresponding homo-
geneous plate (a = 0). It is seen that for the cracked
plate the deflection at one quarter of the plate length
is greater than the deflection of the homogeneous plate
at the same points.



The difference between the curves in Fig. 4 is shown
in Fig. 5 with the deflection of the homogeneous plate
taken as the reference. Here and below line 1 is for
a/h = 0, line 2 is for a/h = 0.5, line 3 is for a/h = 0.8
and line 4 is for a/h = 0.99.

0

0.05

0.1

0.15

0.2

0.25

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 x

w(x) Fig.4

’w5a1.dat’
’w5a08.dat’
’w5a05.dat’

−0.01

−0.005

0

0.005

0.01

0.015

0.02

−1 −0.75−0.5−0.25 0 0.25 0.5 0.75 x

∆w(x) Fig.5

1

2

3

4

’wcmpar.dat’
’wcmpar.dat’

• Fig. 6 shows the distributions of the bending stresses
along the plate for different crack lengths. It is seen
that the distributions are strongly dependent of the
crack length. Note that the bending stress distribution
for the homogeneous plate has three local maxima with
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the greatest at the plate midpoint. Two other maxima
are close to the plate edges and their amplitudes are
about three times smaller than the stress amplitude at
the plate center. With the crack length increase, the
amplitudes of the ”edge” maxima grow and the loca-
tions of the maxima shift to the plate center. At the
same time the bending stresses at the plate midpoint
monotonically decrease down to zero at a = h.

• At the penetration stage the crack presence becomes
even more important. With the crack length increase,
both the period and the amplitude of hydroelastic vi-
brations of the plate increase (Fig. 7), however, the
amplitude of the bending stresses decreases (Fig. 8).
Figure 8 demonstrates also that the longer the crack,
the greater the contribution of the higher modes to the
stresses at the penetration stage.
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CONCLUSION

It was shown that presence of a crack is important for
evaluation of bending stresses and deflections in the
impacting plate. Repeated hydrodynamic loads during
the structure-wave interaction may lead not only to
growing of the crack but also to the damage of the
whole construction. If we know the bending moment
distribution along the beam and use the fatigue damage
theory, we can estimate number of water impacts which
construction may stands, i.e. estimate lifetime of a ship
structure.
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