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1 Introduction

A circular cylinder submerged under the free surface in an ideal fluid is considered when it is
steadily moving or undergoing periodic heaving motions. A new fast, accurate numerical method
is developed to compute nonlinear hydrodynamic forces on the cylinder.

The method presented here is based on a generalization of the formulation proposed by Choi
[2]. The original third-order nonlinear equations for the evolution of the free-surface of an inviscid
fluid in the absence of a body are modified for singularities representing the cylinder below the
free-surface. The resulting evolution equations for the free surface are solved by using an efficient
pseudo-spectral method. This numerical method requires a distribution of singularities only along
the body boundary and therefore the computation is run more quickly than the fully-nonlinear
boundary integral methods, hopefully without losing the essential effects of the nonlinearity. Our
numerical solutions are also validated against available analytical, numerical, and experimental
results.

2 Nonlinear Evolution Equations

The free surface evolution equations are derived by modifying the method for free waves outlined by
Choi [2]. The free surface velocity potential is modified to be the summation of the velocity potential
due to the singularities on the body and the velocity potential due to wave effects. By formally
solving the Laplace equation with systematic asymptotic expansion, the kinematic and dynamic
boundary conditions yield a system of two equations for the evolution of the one-dimensional free
surface:

ζt = −H[Φx + (ζ(H[Φx]− S))x + (ζH[ζ(H[Φx]− S)]x)x + 1
2(ζ2Φxx)x]

−[ζΦx + 1
2(ζ2(H[Φx]− S))x]x + S, (2.1)
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Φt = 1
2(H[Φx]− S)2 + ζΦxx(H[Φx]− S) + (H[Φx]− S)H[ζ(H[Φx]− S)]x − gζ − 1

2Φ2
x −

P

ρ
, (2.2)

where Φ(x, t) is the total velocity potential on the free surface, ζ(x, t) is the free surface elevation, g
is acceleration due to gravity, ρ is the density of the fluid. In (2.1)–(2.2), S(x, t) is a term connected
with the velocity potential for the singularities representing the body, φs(x, z, t) given by

S(x, t) = φs
z(x, 0, t) + H[φs

x(x, 0, t)] . (2.3)

These equations are correct to the 3rd order in wave steepness, a/λ, where a and λ are wave
amplitude and wavelength, respectively.

With given Φ and ζ, the body boundary condition is imposed at the body’s instantaneous
position, using a desingularized boundary integral method, described by Beck [1]. This gives the
strength of singularities and hence φs can be computed at a given time step. Then equations (2.1)–
(2.2) are evaluated to update Φ and ζ by using the pseudo-spectral method with which the Hilbert
transform operator H defined by

H[f(x)] =
1
π
−
∫ ∞

−∞
f(x′)
x− x′

dx′. (2.4)

has a simple form in Fourier space.

3 Results

3.1 Steadily translating dipole

A translating unit dipole with depth Froude number 1√
5

is chosen as the first test problem, which
was solved linearly by Havelock [3] and others. The solution for various orders can be seen in figure
1 and notice that the first-order solution is quite different from the higher-order solutions. The
difference between our 1st order solution and the Havelock solution is on the order of 10−6.

3.2 Submerged translating cylinder

Scullen and Tuck [4] investigated the inviscid fully-nonlinear problem for a radius/submergence
ratio of 0.2 at three different depth Froude numbers. These same Froude number calculations were
run using our pseudo spectral method, with 40 points on the body and approximately 15 points
per wavelength. The 1st and 3rd order solutions are compared to the fully nonlinear Scullen and
Tuck results in figures 1 and 2.

The agreement with the results of Scullen and Tuck is very good for the 3rd order calculations,
especially considering the theoretical accuracy of the method is only 3rd order in wave steepness
(a/λ). There is poor comparison between the 1st order solutions and the fully nonlinear calculation,
except in the high froude number case which is consistent with the the observation made by Tuck
[6]. Tuck showed several issues with the linear solution. Overall the method quite accurately
reproduces the fully nonlinear solution, and the results show that the linear solution has significant
errors for this problem.



3.3 Submerged heaving cylinder

Results for a cylinder heaving below the free surface are shown in figure 3. Again these results
were calculated for 40 points on the body and approximately 15 points per wavelength. At present
these have not been compared with any previous results, but comparison with either experiment
or theoretical results will be attempted.
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Figure 1: Plot of ζ for calculations for translating dipole and for a translating submerged cylinder
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Figure 2: Plot of ζ for calculations for translating submerged cylinders
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Figure 3: Plot of ζ for preliminary calculations for cylinder heaving below the free surface



Discusser: H. Bingham
Explicit free surface perturbation/Taylor expansion schemes such as the one you use

here tend not to converge for nonlinearity about 80% of the highest stable wave. This is
true in all water depths and the nonlinearity can be measured in either H/λ or H/h. Can
you confirm this or are you able to exceed this limit?

Author’s reply:
We cannot confirm this convergence issue with our formulation to third order in wave

steepness, although we have successfully completed runs for wave of 85 % of the highest
wave with good preservation of the wave shape. For a run at H/λ = 0.12 energy was
conserved to better than 0.005 % and the phase speed error was approximately 0.5 %. This
was achieved with the maximum wave-number of interest adjusted in the same manner
as detailed in the paper. Attempts at running an H/λ = 0.13 wave were made but the
wave shape was preserved poorly though the simulation remained stable. It is possible
that this is the limit of wave amplitude that our 3rd order formulation can handle and
higher order terms are required to describe higher amplitude waves.


