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Introduction

Unsteady two-dimensional problem of elastic structure impact onto a liquid free surface is considered
within the Wagner approximation. Elastic de
ection of the structure during water impact is described
by Euler beam equation with additional support conditions.
This problem has been intensively studied decomposing the de
ection in normal modes of the structure
vibration in air. This method is well suited when considering an homogeneous beam or simple geometric
shapes but looses all the advantages of the analytical developments when the body is of a more general
shape. There is a possibility to use the advantages of the Wagner approach in combination with the
�nite element method which is a main tool in the structural analysis. This combined method can deal
with complicated elastic structures treating the hydrodynamic part of the coupled hydroelastic problem
in a way similar to that for the homogeneous one. The development of the �nite element method for the
structural part in combination with the Wagner approach is the subject of the present study.
Advantages of the present technique are illustrated by analysis of the symmetric problem of elastic wedge
entry. The obtained numerical results are compared with those by the normal mode method in the case of
wedge platings of constant thickness. Very good agreement between these two methods has been found.

Mathematical model

The problem of elastic wedge impact is formulated as follows. Initially an elastic wedge touches horizontal
free surface of the liquid at a single point (x0 = 0, y0 = 0) and starts to move down at instant t0 = 0 with a
constant velocity V . The side walls of the wedge are modeled as simply supported identical Euler beams.
The beams are of variable thickness. In this case the 
ow caused by the wedge impact is symmetric with
respect to the line x0 = 0. In symmetric case, normal de
ection of the beam is denoted by w0(s0; t0),
where s0 is the coordinate along the initially 
at side walls, s0 = 0 corresponds to the wedge tip and
s0 = L to the beam end point. For small deadrise angle of the wedge, we have s0 � x0. Position of the
wedge side walls is described by the equation y0 = jx0j tan 
 + w0(x0; t0) � V t, jx0j < L cos 
, where 
 is
the deadrise angle of the equivalent rigid wedge and L is the length of the side walls.
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Figure 1: Basic con�guration and de�nitions.

The beam length L is taken as the length scale and the impact velocity V as the velocity scale of liquid

ow. The quantity T = (L=V ) sin 
 is taken as the time scale and the product L sin 
 as the displacement
scale. The product V L is taken as the scale of the velocity potential and the quantity �V 2= sin 
 as
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the hydrodynamic pressure scale. Wagner theory is applied to the entry problem of a wedge with small
deadrise angle 
 [1].
Within the adopted Wagner approach two-dimensional and potential 
ow caused by beam impact is
described in non-dimensional variables by the velocity potential '(x; y; t) which satis�es the following
equations:

'xx + 'yy = 0; p = �'t (y < 0); (1)

p = 0; �t = 'y (y = 0; x > a(t) and x < �b(t)); (2)

'y = �1 + wt (y = 0; �b(t) < x < a(t)); (3)

'! 0 (x2 + y2 !1): (4)

The point with coordinates (�b(t); 0) moves along the boundary and corresponds to the left edge of the
contact region between the entering body and the liquid, and the point with coordinates (a(t); 0), which
moves to the right, corresponds to the right edge of the contact region. The functions a(t) and b(t)
are unknown in advance and have to be determined together with the solution. In the symmetric case
b(t) = a(t). Finally, p(x; y; t) is the hydrodynamic pressure, which is de�ned by the linearized Bernoulli's
equation.
The beam de
ection w(x; t) is governed by the equations

m(x)
@2w

@t2
+

@2

@x2

�
EI(x)

@2w

@x2

�
= p(x; 0; t) (�1 < x < 1; t > 0); (5)

w = wxx = 0 (x = �1; x = 0; x = 1; t � 0); (6)

w = wt = 0 (�1 < x < 1; t = 0) (7)

where x = x0=L, m(x) = m0(xL)=(�L) is the non-dimensional mass distribution, E is the Young's
modulus of elasticity, EI(x) = EI 0(xL) sin2 
=(�V 2L3) is the non-dimensional rigidity of the beam and
I 0(x0) is the moment of inertia of the cross section. Edge conditions (6) are chosen to represent the simply
supported beam and can be easily replaced for other cases.
The additional condition, which is known as the Wagner condition, states that at the contact points
x = a(t) and x = �b(t) the elevations of the free surface are equal to the vertical coordinates of the
deformed plate at these points. This condition leads to the following equations for a(t) and b(t):

a(t) + w[a(t); t]� t = �[a(t); t] ; �b(t) + w[�b(t); t]� t = �[�b(t); t] (8)

The formulated coupled problem is nonlinear due to these equations.

Finite element method and coupling

Within the �nite element method the beam is divided into N elements and the beam de
ection is
represented inside each element with the help of four polynomials of the third order Nij(�):

w(x; t) =

NX
j=1

4X
i=1

aji(t)Nij(�) (9)

where � is the local coordinate within the element j, �1 < � < 1, x = xj + `(� + 1)=2, ` is the element
length, x1 corresponds to the left edge of the beam and xN + ` to its right edge, xj+1 = xj + `. The
unknown coeÆcients aji(t) are referred to as principal coordinates of the beam de
ection.
Variational form of the Euler beam equation and representation (9) provide system of 4N di�erential
equations with respect to the principal coordinates

M�a+Ka = f(t); (10)

where

a(t) = (a11; a12; a13; a14; a21; a22; :::::)
T ; f(t) = (f11; f12; f13; f14; f21; f22; :::::)

T ; (11)

fji(t) =

Z xj+1

xj

p(x; 0; t)Nij(�)dx; � = 2(x� xj)=`� 1 (12)



and p(x; 0; y) = �'t(x; 0; t).
Note that p = 0 outside the contact region, where x > a(t) or x < �b(t). Therefore fji(t) � 0 if j-th
element is not wetted, (xj ; xj+1) \ (�b(t); a(t)) = ;.
After some manipulations we obtain:

fji(t) = � d

dt

�
`

2

Z 1

�1

'(xj + `(� + 1)=2; 0; t)Nij(�)d�

�
(13)

The coupling procedure is similar to that applied in [2] except that the hydrodynamic coeÆcients are
di�erent. First of all, thanks to the condition (3) and representation (9), we can decompose the potential
under the contact region in the following form:

'(x; 0; t) = '0(x; a; b) +

NX
j=1

4X
i=1

_aji(t)'ij (x; a; b); (14)

where 'ij(x; a; b) = �ij(x; 0; a; b) with �ij(x; y; a; b) being solutions of the boundary value problems:

��ij = 0 (y < 0); (15)

�ij = 0 (y = 0 x > a or x < �b); (16)

@�ij
@y

= Nij [2(x� xj)=`� 1] (y = 0; x 2 (xj ; xj+1) \ (�b; a)); (17)

@�ij
@y

= 0 (y = 0; x 2 (�b; a)n(xj ; xj+1)); (18)

and '0(x; a; b) = �0(x; 0; a; b) with the function �0(x; y; a; b) being solution of equations (1) - (4) for the
rigid wedge case (i.e. w(x; t) � 0).
Substituting (14) into (13) and combining the result with (10), we end up with the matrix equation

d

dt
[(M+ S) _a+ f0] +Ka = 0; (19)

where f0 = f0(a; b) is the vector-function with components

[f0]ji =
`

2

Z 1

�1

'0(xj + `(� + 1)=2; a; b)Nij(�)d�; (20)

and S is the matrix of added masses, S = S(a; b), with elements

[S]nmji =
`

2

Z 1

�1

'mn(xj + `(� + 1)=2; a; b)Nij(�)d�: (21)

It is convenient to introduce new unknown vector d = (M+S) _a+ f0, with the help of which the original
coupled problem is reduced to the system of ordinary di�erential equations

_d = �Ka; (22)

_a = (M+ S(a; b))�1[d� f0(a; b)]: (23)

The initial conditions are a(0) = 0;d(0) = 0.
It is important to note that the Wagner condition (8) should also be reformulated according to the �nite
element representation (9), in order to properly close the problem. The details are not given here and
can be found in [3].

Hydrodynamic coeÆcients

The main diÆculty of the analysis is the evaluation of the added mass matrix S, excitation vector f0 and
the wetted part of the body a(t); b(t). Here we concentrate on the evaluation of the added mass.
We rewrite equation (21) using the global coordinate x instead of the local variable �

[S]nmji (a; b) =

Z xj+1

xj

'mn(x; a; b)Nij(2[x� xj ]=`� 1)dx; (24)



where 1 � n; j � N , m; i = 1; 2; 3; 4. It should be noted once again that in (24) only the numbers j and
n, for which both intervals [xj ; xj+1] and [xn; xn+1] have non-empty intersections with the contact region
[�b; a], are considered. For all other numbers j and n the integral in (24) is equal to zero.
It is convenient to introduce the new function

N̂ij(x) =

�
0; x > xj+1; x < xj
Nij [2[x� xj ]=`� 1] xj < x < xj+1;

(25)

with the help of which integral (24) takes the form

[S]nmji (a; b) =

Z
1

�1

'mn(x; a; b)N̂ij(x)dx =

Z a

�b

'mn(x; a; b)N̂ij(x)dx: (26)

Denoting ~Nij(x) =
R x
�b

N̂ij(x0)dx0 , integral (24) can be written as

[S]nmji (a; b) = �
Z a

�b

~Nij(x)
@�mn

@x
(x; 0; a; b)dx: (27)

After introducing the new variable �, so that x = x(�) = a+b
2
�+ a�b

2
we can write:

[S]nmji (a; b) = �a+ b

2

Z 1

�1

~Nij [x(�)]
@�mn

@x

�
a+ b

2
�+

a� b

2
; 0; a; b

�
d�: (28)

A solution of the problem (15){(18) for @�mn=@x can be found under the form

@�mn

@x

�
a+ b

2
�+

a� b

2
; 0

�
=

1

�
p
1� �2

P.v.

Z 1

�1

N̂mn[x(�)]
p
1� �2d�

� � �
: (29)

Substituting (29) into (28) and rearranging the result, we obtain that all elements of the added mass
matrix, as well as the forcing vector f0 and the wetting correction, can be evaluated analytically [3] which
makes the procedure very eÆcient.

Results and discussion

In �gure 2, we show the results for the non-dimensional de
ection, and its second derivative, of the wedge
right plating during impact, obtained by the present method and normal mode method [1]. The plate
is freely supported at its edges, the half-length L equals 0:5m, the beam thickness is 1cm, its density
7850Kg=m3, deadrise angle 
 is 10 degrees, and the velocity equals 4m=s. The time corresponds to the
instant where the plate is wet at 50%. We can see very good agreement between two methods.
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Figure 2: Plate de
ection (left) and its second derivative (right) obtained by modal and FEM approach.
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