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In atomic physics, when a plane wave of amplitude 1 interacts with an atom or nucleus, the amplitude
at distance R and angle θ is taken as

A(θ) = (1/kR)f(θ) (1)

where k = 2π/λ and f(θ) is called the scattering amplitude. For real f the radiation is in phase with
the incident wave. The “optical theorem” states that the total cross-section (i.e. the effective combined
target area for scattering and capture) is

σtot = 4πλ-2 ={f(0)} (2)

with λ- = λ/2π.

Figure 1: Fraunhofer spiral

To understand this formula, consider a plane of atoms transverse to the incoming wave, as shown
in Fig. 1, with n atoms/cm2, and sum over the wavelets reaching point P on the axis from annular
elements of radius y to y + dy, using the Fraunhofer spiral. The phase delay for this annulus, relative
to the wave from the centre, is θ = πy2/Rλ, while the elementary vector at P corresponding to this
annulus has length dV = 2πydy × nf(0)/kR. As dθ ∝ dV , the vectors add to a circle of radius
AB = dV/dθ = 2πnλ-2

f(0).

If P is far from the plane of atoms, only the forward scattering amplitude f(0) is relevant. The
elements far from the axis contribute gradually less and less (because of their increasing distance from
P) so adding over the whole plane gives a slowly diminishing spiral and the final vector is just the
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vector AB of length 2πnλ-2
f(0). The vital point is that although all the atoms radiate in phase with the

incoming wave, the vector AB is delayed 90o relative to the original wave at P , because on average the
path length to P is slightly increased. Adding AB to the original vector OA of length 1, the resultant
OB is slightly delayed in phase. This is the origin of refractive index.

If there are ρ, atoms per cm3 and the layer of atoms is t

Figure 2: η circle, radius 1

thick, the phase shift is

(µ− 1)t/λ = 2πλ-2
f(0)ρt

so
µ− 1 = 4π2ρλ-3

f(0)

is determined by the real part of the forward scattering
amplitude. This tells us how to make refracting lenses in
the sea, using a field of undamped resonant scatterers!

If f(0) is imaginary we get an extra phase shift of 90o

and the vector AB subtracts from the incoming vector
OA: the wave is attenuated. For small n,

OB2 = {1− 2πnλ-2 ={f(0)}}2 = 1− nσtot

where σtot is the total cross-section per atom for interac-
tion with the incoming wave: Eqn.(1) follows.

σtot is the effective area for one atom interacting with the incoming wave; it includes scattering and
capture.

σtot = σscat + σcap.

If the size of the interacting body is much less than λ, the scattered amplitude is isotropic and we can
write f = 1

2
i(1− η). Then

σtot = 2πλ-2 <{1− η} (3)

But by integrating (1) over the whole solid angle 4π,

σscat = 4πλ-2
f 2 = πλ-2|1− η|2 (4)

so
σcap = σtot − σscat = πλ-2

(1− |η|2) (5)

From this we conclude that |η| ≤ 1. Fig. 2 shows the circle in the complex plane which includes all
possible values of η. If η is represented by the point Y , the shaded area is proportional to σcap. The
square of the vector XY determines σscat, while twice its horizontal projection gives σtot. Maximum
power is captured when η = 0 and in this case σcap = σscat = 1

2
σtot.

For water waves in two dimensions, similar arguments apply. Consider an incoming plane wave of
unit amplitude incident on a line of objects, n per unit length, each radiating an amplitude

A(θ) = (λ/R)1/2f(θ) (6)

As before the phase delay for a signal from Q (fig. 1) is πy2/Rλ = πv2/2 where v = y
√

2/Rλ while the
length of the elementary vector at P corresponding to the line element dy at Q is

n(λ/R)1/2f(θ)
√

Rλ/2 dv = nλf(0)dv/
√

2.



Figure 3: Cornu spiral

This combination of vector length and phase generates the Cornu spiral (fig. 3) and the resultant vector
has components C (real) and S (imaginary) given by the Fresnel integrals [1]

C = nλf(0)/
√

2
∫ ∞
−∞

cos(πv2/2)dv (7)

S = nλf(0)/
√

2
∫ ∞
−∞

sin(πv2/2)dv (8)

Both integrals are equal to 1, so the resultant vector has length nλf(0) but its phase delay is only 45o.
Now recall that the individual bodies, moving in phase with the incident wave, will radiate a Bessel
function. At large distances the asymptotic form is cos(kR− π/4) which gives an extra phase delay of
45o so the resultant vector is, as before, delayed 90o on the incident wave at P ; the real part of f(0)
will lead to refraction, while the imaginary part gives the total interaction width Wtot which includes
scattered power Wscat and captured power Wcap.

Wtot = 2λ ={f(0)} (9)

If the radiated wave is isotropic, f = f(θ) = 1, and we can use the ansatz

f =
i

2π
(1− η) (10)

which gives
Wtot = 2λ- <{1− η} (11)

Wscat = 2πλ|f |2 = λ-|1− η|2 (12)

Wcap = λ-(1− |η|2) (13)

and fig. 2 will again apply.



More generally, when the polar diagram is not isotropic,

Wscat = λ
∫ 2π

0
|f(θ)|2 dθ (14)

and subtracting this from eqn(9) gives

Wcap = 2λ ={f(0)} − λ
∫ 2π

0
|f(θ)|2 dθ (15)

Note that f(θ) enters linearly in the first term and squared in the second, so by varying the magnitude
of f(θ) keeping the same functional form, Wcap can be maximized and the optimum value is

Wmax
cap = λ

[={f(0)}]2∫ 2π
0 |f(θ)|2 dθ

(16)

This formula has been found independently for particular cases by Newman [2] and Evans [3]. The
more general result was derived by Farley [4]. Eqn(16) is completely independent of the mechanism
of wave capture and applies to any combination of vibrational modes in the device; the capture width
depends only on the polar diagram and the phase of the radiated waves.

For example, for a small heaving buoy the radiation is isotropic, f0(θ) = 1, and the best capture
width is λ/2π [5]. For a small object moving in surge or pitch however f1(θ) = cos(θ) and the capture
width rises to 2× λ/2π. One may combine these modes to give

f(θ) = f0(θ) + βf1(θ)

and vary β to get the best result; one finds β = 2 which gives Wcap = 3 × λ/2π in agreement with
Falnes [6].

It is clear from eqn(16) that an ideal attenuator should radiate only in the forward direction. The
more concentrated the polar diagram, the greater the capture width. But antenna theory tells us that
to have a narrow polar diagram, the radiator must be several wavelengths long, either in the beam
direction or transverse to it. Furthermore, to concentrate the beam in the forward direction a traveling
wave should be excited on the attenuator.
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