A new absorbing boundary conditions for
three-dimensional surface wave simulations

DiniEr CLAMOND, DoriaNn FRUCTUS & Joun GRUE

MECHANICS DIVISION, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO, NORWAY.

E-Mail: didier@math.uio.no, dorianf@math.uio.no & johng@math.uio.no

1 Introduction

Numerical simulations of non-periodic problems extending to infinity in some horizontal directions,
require the artificial truncation of the computational domains. The absorption of outgoing waves,
at a truncation boundary, is therefore crucial; a physically and numerically efficient technics must
thus be used. Various so-called open boundary conditions have long been discussed (see [4, 6] for
reviews). For the three-dimensional extension of our numerical model [1], we developed an open
boundary condition that belongs to the class of so-called “sponge layers” or “numerical beaches”.
These methods are inspired from fluid flows in porous media.

Fluid flows in porous media can be modelled by the Darcy law ¥ = —vy~!grad H, where
V= (u,v) is the velocity vector (w = (uy,uz) is the horizontal velocity field and v is the vertical
one), 7 is the permeability and H is the hydraulic discharge. For homogeneous media (constant 7),
this law implies a potential flow, and Darcy’s equation can be integrated into a Bernoulli-Darcy
equation (BDE):

¢i + 79+ 3(grad ¢)* + gy + p = B(¢), (1)

where ¢ is the velocity potential, g is the acceleration due to gravity, y is the upward vertical
coordinate, B is a Bernoulli ‘constant’ and p is the pressure (per unit of mass). Thus, by analogy
with flows in porous media, a damping technics for surface waves consists in modifying the surface
dynamic condition by adding a term of the form ¢ (v#0 where damping is required), i.e.

bi + b+ gn+La-Vé— 1oV = B(), (2)

where tildes denote the quantities at the surface y=n(z,t) (= (21, z2) are the horizontal Cartesian
coordinates), V is the horizontal gradient and V = ¢,,1/14+|Vn|?, ¢, being the outward normal
derivative of ¢ at the surface. It has been noted that this absorber is not very efficient, and to
avoid spurious parasitic effects (reflection, emission) both v and |Vy| must be relatively small.
Hence, a significant damping is obtained at the expense of using a large damping area.

An alternative damper has then been proposed where v¢ is replaced by v¢,. Though bet-
ter, this low-pass damper is not completely satisfactory and other absorbing methods have been
proposed. For example, one can couple this spongious absorber with an active paddle [2]. This
method is not so easy to implement, however.

We propose here a new spongious-like absorber that has the same advantages as the orginal
’)/qNb — i.e. it damps all the frequencies with the same intensity and it is easy to implement — but
it is more effective.
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2 Modified Bernoulli-Darcy equation

An efficient absorber must damp the physical quantities (e.g. velocity). In order to derive a
physically consistent absorbing equation, we first compute the horizontal gradient of (2)

Ui+9U +6Vy = - [gn+La-Vé- LV, 3)

where U =Vé. In the left-hand side of (3), the expression U;+~U acts as a purely damping oper-
ator, while the expression U, + ¢V~ acts as a wave propagator (hyperbolic operator). Therefore,
a more efficient equation (i.e. purely absorbing operator) is obtained cancelling the term éV7 in
(3) and integrating back the resulting equation, i.e.

¢+ VYV +gn+ Fu- Vo — LoV = B(), (4)

where V™1 = A~1V. The inverse of the horizontal Laplacian operator A can be computed easily
via Fourier transform. The equation (4) is the modified Bernoulli-Darcy equation (MBDE) we use
for absorbing wave. If v is constant the original BDE is recovered.

This absorber has the following features: 7) it is easy to implement; i) it is quickly computable;
iii) it does not require any information about the wave field; iv) it can be easily adapted to complex
geometries; v) it damps all the frequencies with the same intensity. In particular it is efficient in
presence of (local) horizontal current, that is not the case with the damper v¢,,.

3 Implementation and tests

We test the MBDE by simulation of the generation and propagation of an axisymmetric wave
absorbed by an axisymmetric damping region and by a squared one.

3.1 Equations

For the direct simulation of three-dimensional surface waves, we have to solve numerically two
prognostic equations together with the solution of the Laplace equation obtained from the Green
function, i.e.

=V =0, (5)
&t+v-1{wq~s}+gn+%a-v&—%er;ﬁG:0, (6)
/ v’ d_“"zzmﬂ/&'(R'V'”"”'”)d_m' (7)
(14+ D2 R (1+D2>  RY

where R=z'—z, R=|R|, D=(n'-n)/R and p, is a forcing pressure at the surface used to generate
an axi-symmetric wave from rest. We take

P, = Asin(ot)e” 24y >, (8)
where A and A are constants. To transmit as much energy as possible to the far field, given by
n~ a(k|z|)~7 cos(k|z| — ot — r)  as  |e| = oo, (9)
with o2 ~gr, the wavemaker parameters must be taken as [7]
A=1/k, A= gae/V3m. (10)

The practical numerical resolution of the equations (5)—(7) is given in [1]. (A generalization
for internal waves can be found in [5].)



3.2 Numerical experiment

For the simulations, we take k=1, a=0.2 for the wavemaker, and the periodic computational box
is squared with side lengths 207 /k. The shapes of the two dampers tested are depicted on figure
1.

Starting from rest the pneumatic wavemaker is activated. The wave field develops and the total
energy in the basin increases. When the waves reach the damping zone, they totally absorbed and
the energy remains constant forever (figure 2).

The computational domain being periodic, if the waves were not completly absorbed they
would leave the domain on one side and re-enter on the other side; the energy would thus increases.
Similarly, if the waves were reflected the energy would increase.

4 Conclusion

We have derived a simple absorbing boundary condition that is easy to implement in most of the
numerical wave basins and that is efficient for absorbing three-dimensional surface waves. This
damper absorbs all the wavelength with the same intensity. If a stronger damping is required for
the high frequencies the viscous-like absorber of [3], for example, can be added to the MBDE.

Futher examples, more insights of the method and comparisons with other absorbers will be
presented at the workshop.
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Figure 1: Damper’s shapes for a) circular damper and b) squared damper.
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Figure 2: Relative energy evolution and free surface profile at ot/2x = 100 for two
dampers: a-b) circular damper, c-d) squared damper.
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Discusser: H. Bredmose
This looks very interesting. Would you consider it possible to use a similar method to
mimic walls at the boundaries instead of damping?

Author’s reply:

To model impermeable obstacles, you have to increase damping in order to increase
the reflection. This will result in terrible numerical instabilities. I do not think that this
method can be used for realistic walls. To do so, you must adapt it.

Discusser: A.H. Clement
What is the typical length of absorption compared to wavelength in your method?
How does it compare with other method with regards to this parameter?

Author’s reply:

About one characteristic wavelength. Of course, it depends on the wave field. For
moderatly steep waves, the damper can be shorter. To avoid reflection, conventional
dampers must be slowly varying in space and must thus be quite long, much longer than
the new damper.

Discusser: R.W. Yeung

I found your condition rather interesting, certainly it is appealing to dealing with
nonlinear problems. In our recent work, Hamilton and Yeung (J. OMAE, vol. 125, p.9-
16, 2003) we were able to achieve a ”perfectly transparent” condition in three dimensions
within the context of linear theory. This was later extended to allow for viscous internal
flow. Within the context of linear theory, we have noticed in much of our previous
experience that the energy flux is not always directed outward; as a matter of fact, it is
often momentarily towards the center of the disturbance, even though the time-averaged
value is outward. It is not too clear that your proposed condition has this ”bi-directional”
transmission property even just for the case of linear waves. If that is the case, then only
an approximate state of the linear solution will be achieved. Can you comment? Thank
you.

Author’s reply:

Our damper is not "perfectly transparent” in theory. If too strong, the waves are
partially reflected.

The problem with the ”perfectly transparent” conditions we tested, is that they damp
very little. This is a problem for periodic domains. Therefore, very large dampers are
required for a significant damping, that is computationally expensive.

If the new damper is properly designed (that depends of course on the wave field),
the damping effect is strong and the reflection is not significant. Our damper is thus
"perfectly transparent” in practice.



