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SUMMARY

A new asymptotic description of water wave motion in Lagrangian coordinates is developed. The method
is applied to problems of 2D regular travelling waves in deep water and standing Faraday waves. The fifth
order asymptotic solution for travelling waves and the third order solution for standing waves are obtained.
The travelling wave solution is uniformly valid at all times. The free surface predictions of both solutions
are considerably better then the predictions of the Eulerian asymptotic methods of the same order. The
approach described can in future be applied to a wide range of strongly nonlinear water wave problems,
including diffraction, fluid-structure interaction, and so on.

1 INTRODUCTION

The main complication of problems with a free surface is that the Eulerian position of this surface is not specified
a priori, and must be found as a part of the solution. The Lagrangian approach, when the motion of individual
fluid particles is considered, is the natural way to overcome this difficulty. For a wide class of flows the free
surface remains a single connected domain and is free of singularities. In this case surface particles stay on
the surface throughout the entire motion. This means that in the Lagrangian description the free surface is
represented by a fixed boundary of the domain in the space of Lagrangian indexes. The limitation on this is for
certain complex surface phenomena, where self-contact by different parts of the free surface occurs.

The equations describing the motion of water waves are nonlinear and complicated for both theoretical
analysis and numerical modelling. Various types of asymptotic techniques can be used to simplify the problem
formulation to such an extent that it can be efficiently treated by analytical or numerical methods. The first
successful application of an asymptotic method to a water waves problem was the Stokes expansion for a regular
travelling wave. From a view point of modern asymptotic methods this solution is a regular asymptotic expansion
with respect to a small wave steepness. The Stokes expansion provides a basis of perturbation techniques for
problems of significant practical interest, such as wave diffraction, floating body behaviour, and so on. Due to
the complexity of the formulation, however, only linear or low-order nonlinear perturbation theories are usually
used for engineering applications. Unfortunately, certain important features of wave motion cannot be captured
by classical low-order asymptotic expansions.

Nonlinearity enters Eulerian and Lagrangian equations of fluid motion in different ways. Moreover, the
Lagrangian description is more appropriate for the description of violent free surface motion. Thus, we could
expect that the perturbation technique applied to the equations in the Lagrangian form would be able to
describe effects that cannot be captured by classical Eulerian expansions. For example, such phenomena as
overturning waves can in principle be described by low order perturbation methods if applied to equations
written in Lagrangian coordinates. There have been limited attempts to follow this approach. For example,
Pierson (1962) made an attempt to apply perturbation expansions to water wave problems with the Lagrangian
formulation. He represented the Lagrangian displacement of fluid particles as a regular expansion with respect
to powers of a small parameter. Application of this approach to the problem of a regular travelling wave leads
to a solution which is non-uniformly valid for large times when, due to Stokes’ drift, the displacement of the
particles from their original positions grows with time (e.g. Mei, 1989). Because of this feature, the method
apparently cannot be applied to solve many important water wave problems.

The aim of this paper is to develop an asymptotic technique based on the Lagrangian description of fluid
motion, which can be used to model nonlinear surface gravity waves for a wide range of problems of practical
and theoretical interest, including travelling waves, diffraction problems, motion in closed basins, and so on.

2 LAGRANGIAN FORMULATION OF WATER WAVE PROBLEM

Fluid motion in the Lagrangian method is described by tracing the marked fluid particles. For two-dimensional
motion we have x = x(a, c, t); z = z(a, c, t), where (x, z) are Cartesian coordinates of the particle marked by
Lagrangian indexes (a, c) at the time t. Due to the volume conservation of the incompressible fluid, the Jacobian
J of the mapping (x, z)→ (a, c) is motion invariant. The Lagrangian labels can be chosen in such a way that

J =
∂(x, z)

∂(a, c)
= 1. (1)

The fluid occupies a single-connected domain in (x, z)-space, which is represented by a rectangle a1 ≤ a ≤
a2;−h ≤ c ≤ 0 in the space of Lagrangian indexes, where c = −h corresponds to the rigid bed and c = 0 to



the free surface. The side boundaries correspond to the rigid walls when a1 and a2 are finite, or to the free
boundaries at ±∞.

The equations of motion of inviscid incompressible fluid in Lagrangian coordinates (a, c) can be obtained from
Hamilton’s variational principle (e.g. Herivel, 1955). Let us represent the Lagrangian density in the following
form

L = T − U + ρ P (a, c, t) (J − 1),

where the kinematic condition (1) is enforced by means of the Lagrange multiplier P , and ρ is the fluid density.
The densities of the kinematic and potential energies of the fluid motion are

T = ρ (x2
t + z2

t )/2; U = ρ g (1 + Az(t)) z + ρ α ω2
cAx(t) x.

The functions Ax(t) and Az(t) take into account the Cartesian components of accelerations of the (x, z)-frame if
we consider the fluid in a moving tank. The vertical acceleration Az(t) is scaled by the gravity acceleration g, and
the horizontal one Ax(t) by the characteristic acceleration of the fluid particles αω2

c , where α is the characteristic
scale of particle displacement and ωc is the characteristic frequency of the wave motion. According to Hamilton’s
principle the variation of the action integral must be zero. Taking the variation leads to the following equations
describing the dynamics of the fluid particles

xtt +
∂(P, z)

∂(a, c)
+ α ω2

c Ax(t) = 0; ztt +
∂(x, P )

∂(a, c)
+ g ( 1 + Ax(t) ) = 0, (2)

plus the kinematic continuity condition (1). The Lagrange multiplier ρP can be recognised as pressure and the
boundary condition on the free surface c = 0 is P = 0. Equations (2) can be resolved with respect to the spatial
pressure derivatives and rewritten in the following form

∂P

∂a
+ g (1 + Az(t)) za + α ω2

cAx(t) xa = −xttxa − zttza;
∂P

∂c
+ g (1 + Az(t)) zc + α ω2

cAx(t) xc = −xttxc − zttzc. (3)

The terms in the left hand sides of (3) are the components of gradient of a certain scalar function in the label
space. Taking the curl of both sides of (3) we find that the value Ω = ∇a×(xtxa +ztza, xtxc +ztzc) is the invariant
of the motion, that is ∂Ω/∂t = 0, where ∇a× is the curl operator in (a, c)-space. This is the Lagrangian form
of vorticity conservation. If the fluid in the domain at initial time is irrotational we have the condition Ω = 0,
which can be written as

− Ω =
∂(x, xt)

∂(a, c)
+

∂(z, zt)

∂(a, c)
= 0. (4)

When the kinematic conditions (1) and (4), and the boundary conditions on the bottom and side boundaries
are satisfied, it is sufficient to fulfil the first of equations (3) on the free surface c = 0 to define the flow in the
whole domain. For our case of constant surface pressure this leads to the following dynamical condition:

xttxa + zttza + g (1 + Az(t)) za + α ω2
cAx(t) xa

∣∣∣
c=0

= 0. (5)

Thus, our aim is to construct functions (x, z) for continuous (1) irrotational (4) flow satisfying the dynamical
free surface condition (5).

3 ASYMPTOTIC REPRESENTATION OF THE SOLUTION

Let us chose the Cartesian positions of the fluid particles at equilibrium as the Lagrangian indexes. Then the
current particle position can be written as

x(a, c, t) = a + α ξ(a, c, t); z(a, c, t) = c + α ζ(a, c, t),

where the dimensionless functions ξ and ζ describe the particle displacement from equilibrium, and α is the
characteristic scale of this displacement. We shall suppose α to be small compared to the scale of the wave
motion with the characteristic wave number k: kα→ 0. Substitution into (1) in the leading approximation gives
the equation

∂ξ

∂a
+

∂ζ

∂c
= 0. (6)

To satisfy the continuity at higher order we use the deformation of coordinates of the form a1 = a+α ξ(a, c)/2 and
c1 = c + α ζ(a, c)/2. Successively repeating this procedure, we finally obtain the following recursive asymptotic
representation of the solution:

x(a, c, t) = a + α ξ(an, cn, t); z(a, c, t) = c + α ζ(an, cn, t)

a0 = a; c0 = c; an = a + α ξ(an−1, cn−1, t)/2; cn = c + α ζ(an−1, cn−1, t)/2,
(7)

where functions ξ(a, c) and ζ(a, c) satisfy equation (6). Stopping the recursion at level n we satisfy continuity
with accuracy O(kα)n+1. Equation (6) can be satisfied by using a single ”stream function“ Ψ:

ξ(a, c, t) = − 1

k

∂Ψ

∂c
; ζ(a, c, t) =

1

k

∂Ψ

∂a
. (8)



To satisfy asymptotically the irrotationality condition (4) and the free surface condition (5) we expand the
function Ψ into asymptotic series with powers of small parameter: kα Ψ = Ψ0 + kα Ψ1 + · · · . Substituting this
expansion into (4) we obtain in the leading approximation ∂(∇2Ψ0)/∂t = 0. Thus, the function Ψ0 is the sum of
a harmonic function depending on time as a parameter and an arbitrary function of coordinates. This reflects
the non-uniqueness of the choice of Lagrangian indexes (a, c). For our choice of the Lagrangian indexes the
arbitrary function of coordinates is harmonic, and the whole function Ψ0 satisfies Laplace equation ∇2Ψ0 = 0.

For higher approximations we obtain Poisson equations with the right-hand sides depending on the previous
approximations. The details of the solution procedure depend on the particular problem in hand. Here we
consider two examples of application of the approach described above.

4 APPLICATION FOR A STANDING WAVE

For the sloshing motion in a rectangular tank 0 < x < b, −h < z < ζ(x, t) we can represent the solution for
function Ψ0 as an expansion by the linear sloshing modes (eigen modes). For our choice of Lagrangian indexes
we can write

Ψ0 =

∞∑
n=1

1

n

sinh(nk(c + h))

sinh(nk h)
sin(nk a)Fn(t),

which satisfies the Laplace equation in the rectangular domain 0 < a < b, 0 < c < −h, and the boundary
conditions on the rigid walls a = 0; a = b and the bottom c = −h. Here k is the wavenumber of the first sloshing
mode k = π/b, and functions Fn describe the time evolution of the individual modes. The right hand sides in the
Poisson equations of higher approximations will include the products of derivatives of Ψ0. To proceed we have
to expand the right hand sides into series with respect to linear sloshing modes. The terms of these expansions
include double infinite sums for the second order, triple sums for the third order, etc, which makes the analysis
for the high orders extremely difficult. Nevertheless, in the case when there is one dominating mode (e.g. in
the case of resonance) the procedure for constructing the higher order solutions becomes much simpler. Such a
dominating mode will generate only a restricted number of modes at higher orders. We have found that the 3rd
order solution for continuous irrotational flow can be represented in the following form

Ψ =

3∑
n=1

(kα)n−1 sinh(nk(c + h))

n sinh(nk h)
sin(nk a)Fn(t) + (kα)2

sin(3ka) sinh(k(c + h)) + sin(ka) sinh(3k(c + h))

4 sinh(k h) sinh(2k h)
F12(t)+

+ (kα)2
sin(3ka) sinh(k(c + h)) + sin(ka) sinh(3k(c + h))

32 sinh(k h)3
F111(t) + O(kα)3

(9)

where k is the wavenumber of a dominating mode. The two last terms here are used to satisfy the kinematic
irrotationality condition (4). The behaviour of these terms is completely defined by the behaviour of the eigen
modes Fn through the following differential relations:

F ′′
12 = F ′

1F2 − F1F
′
2; F ′′

111 = −F ′
1F

2
1 . (10)

Functions Fn, describing the time evolution of eigen modes, can be found from the free surface boundary
condition (5). Substituting (9) back into (7) and (5), we expand the resulting expression into a Taylor series
for small kα up to the third order and collect terms proportional to sin(nka) with the same n. The terms due
to the horizontal forcing are proportional to Ax(t) and include the coefficients cos(mka), m = 0, 1, 2..., which
should be expanded into a Fourier series with respect to sinnka, n = 1, 2... on the interval a ∈ [0, b]. As a result
we obtain a system of three non-linear differential equations describing the time evolution of modal functions
Fn(t), n = 1, 2, 3. The final formulation consists of the initial value problem for ODEs, including the three
equations for Fn together with equations (10) and proper initial conditions.

5 APPLICATION FOR A REGULAR TRAVELLING WAVE

To resolve the Stokes’ drift problem, which arises in the case of open infinite domains and leads to solution
being non-uniformly valid at large time, we represent the total motion of the particle as a steady motion with
the mean drift velocity and small oscillations around the steadily moving mean position. Thus, we rewrite the
recursive representation of the solution (7) in the following form:

x(a, c, t) = a + α ωt f(c) + α ξ(an, cn, t); z(a, c, t) = c + α ζ(an, cn, t)

a0 = a + α ωt f(c); c0 = c; an = a + α ωt f(c) + α ξ(an−1, cn−1, t)/2; cn = c + α ζ(an−1, cn−1, t)/2,
(11)

where functions ξ and ζ are to be expressed by using Ψ as in equations (8). The function Ψ describes the
periodic part of the solution, and function f(c) represents the variation of mean Stokes’ drift with depth. We
look for 5th order asymptotic expansions for unknown functions and frequency:

Ψ(a, c, t) =
∑4

n=0(kα)nΨn(a, c, t) + O(kα)5; f(c) =
∑4

n=0(kα)nfn(c) + O(kα)5; ω =
∑4

n=0(kα)nωn + O(kα)5.
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Figure 15. Comparison of numerical and experimental results, experiment V21 (Boussinesq
solver). The numerical free-surface elevation is plotted as a dashed line. Time values are written
in the upper right corner of each image.

were used, where k = 2π/L. The acceleration field was varied in time as

g(t) = g0(1 + f sin ωt), (6.3)

ω being twice the linear angular frequency of the corresponding standing wave mode.
In the calculations neither smoothing nor surface tension was included. At the scale
investigated here, surface tension is not important until sharp corners are approached
and our numerical scheme fails. For a = 0.3 and f = 0.75 the result of a model run
is presented in figure 17, obtained with 80 computational points. The resulting wave
is seen to have the ‘table-top’ form observed experimentally. Figure 17(a) shows the
upward motion of the wave, beginning with the initial condition (6.2). The wave
reaches a ‘table-top’ shape early in its evolution, the top becoming perfectly flat and
the sides almost vertical at t = 0.34 s. On further upward motion corners develop, so
that the top of the profile is wider than the lower part. For the extreme profile the top
has a small depression in the middle. For this profile the maximum surface elevation
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Figure 1: The comparison of the Lagrangian asymptotic solutions (solid lines) with the analogous Eulerian
solutions (broken lines). Right: surface elevation profiles for a regular travelling wave. Left: surface elevation
profiles for standing wave coupled with an experiment of Bredmose et al. (2003) (reproduced by kind permission
of the authors).

The coefficients of the expansions can be found after back substitution into (11), (5) and (4), and expanding the
result into Taylor series with respect to small kα. Functions Ψn are (c; t)-periodic functions satisfying Laplace
and Poisson equations, and are the linear combinations of terms em1 kc sin(m2(ka + ωt)). For the case of deep
water they are found to be

Ψ0 = ekc sin(ka− ωt); Ψ1 = 0; Ψ2 = 5
8

e3 kc sin(ka− ωt); Ψ3 = ( 1
4

e2 kc − 5
24

e4 kc) sin(2(ka− ωt));

Ψ4 = ( 3
4

e3 kc + 39
32

e5 kc) sin(ka− ωt) + ( 1
36

e3 kc + 49
1152

e5 kc) sin(3(ka− ωt)).

Functions fn are used to balance the non-periodic terms of the equations, and the terms ωn in the frequency
expansion deal with the dynamic free-surface condition (5). We obtain

f(c) = (kα) e2 kc + 2 (kα)3 e4 kc + O(kα)5; ω =
√

gk (1 + 1
2
(kα)2 + 9

8
(kα)4 + O(kα)6).

The wave amplitude A = ( z(0, 0, 0) − z(π/k, 0, 0) )/2 can be represented as an expansion with respect to small
parameter A = α (1 + 1

2
(kα)2 + 9

8
(kα)4 + O(kα)6) . We can introduce a new small parameter kA, which is more

physically relevant and independent of the particular form of the solution representation. The expansion of the
square of phase velocity with respect to this parameter is C2 = (ω/k)2 = gk (1 + (kA)2 + 1

2
(kA)4 + O(kA)6), which

coincides with the corresponding result obtained from Stokes’ expansion.

6 RESULTS

The third order solution for sloshing in a 2D rectangular tank with a dominant mode and the fifth order
asymptotic expansion for a plane regular wave in deep water were obtained. Some of the results are shown
on figure 1. On the left there is a comparison of the 3rd order Lagrangian profile of a parametrically forced
standing wave (black solid line) and the corresponding 3rd order Eulerian profile (white broken line) both
plotted on top of the experiment of Bredmose et al. (2003), reproduced by kind permission of the authors. On
the right the free surface profiles for regular travelling waves of various steepness obtained by 5th order new
Lagrangian theory (solid lines) are compared with the 8th order classical Stokes’ expansions (broken lines). It
can be clearly seen that our Lagrangian predictions of the free surface are considerably better then those of the
corresponding asymptotic solutions of the same orders in the Eulerian description. The great improvement of
our new Lagrangian perturbation method compared to early attempts is because our solution for a regular wave
is uniformly valid for all times. In general, the results obtained demonstrate that the new theory provides a good
description of nonlinear water waves and has certain advantages compared to the classical Eulerian perturbation
theory. The authors believe that further development of the approach will lead to a simple method relevant for
many practical engineering applications.
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Discusser: H. Bredmose
This sounds very interesting. To apply the method to a specific problem, is it necessary

to run a symbolic processor for each new case? What is the computational time for the
Bredmose et al. (2003) experiments?

Author’s reply:
A symbolic processor helps to obtain an asymptotic formulation for a specific class of

problems. After this the simplified formulation can be applied for solving various problems
within this class, for example, for various tank sizes and motions in the presented problem
on the forced sloshing in a rectangular tank. The numerical solution of the problem in
final asymptotic formulation is very fast. For the cases in the paper computations take
only few seconds and can be performed in real time.

Discusser: Q.W. Ma
From your presentation we saw the applications of the new method to water wave

problems without floating bodies. I would like to know if the method could be applied to
the problems with floating bodies on the free surface.

Author’s reply:
The basic concept of the method is quite general and the only principal restriction is

that the flow should be two dimensional. Nevertheless, for every new class of problems
an extensive work has to be done to obtain final asymptotic formulation. The authors
believe that it is possible and for certain problems including floating bodies as well.
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