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Abstract. This paper reports on our first attempts to compute highly-nonlinear wave interaction
with bottom-mounted coastal structures using a high-order Boussinesq method. The results pre-
sented here include the classical linear diffraction pattern around a breakwater (for validation),
and the nonlinear interaction of waves with a bottom-mounted plate where we compare to the
experimental measurements discussed by Molin et al. [1] at the 18th workshop. The computed
results involving linear breakwater diffraction, while not perfect, are in reasonable agreement with
the theoretical predictions. More impressively, a highly-nonlinear simulation involving run-up on
a vertical plate is in excellent agreement with experimental measurements.

1 The Boussinesq model

The Boussinesq method used to make these computations is derived in [2, 3], where it is shown
to accurately propagate nonlinear traveling waves in dimensionless water depths up to kh ≈ 25
(k the wavenumber, h the water depth) right up to the stable breaking limit. The associated
wave kinematics (vertical distribution of pressure and velocity) are accurate up to kh ≈ 12. In
[6] the method has been used to investigate three-dimensional instabilities leading to crescent
wave patterns of extreme nonlinearity. To briefly outline the method, we consider water waves in
three-dimensions using a coordinate system having the origin on the still-water plane, with the
z-axis pointing vertically upwards. The fluid domain is bounded by the sea bed at z = −h(x),
with x = [x, y], and the free surface at z = η(x, t), where t is time. The free surface boundary
conditions are written in terms of velocity components at the free surface ũ = [ũ, ṽ] = u(x, η, t)
and w̃ = w(x, η, t):

∂η

∂t
= w̃ (1 + ∇η · ∇η) − Ũ · ∇η, (1)
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where ∇ = [∂/∂x, ∂/∂y] is the 2-D gradient operator and Ũ = [Ũ , Ṽ ] = ũ + w̃∇η. Evolving η
and Ũ forward in time requires a means of computing w̃ subject to the Laplace equation and the
kinematic bottom condition (KBC): w + ∇h · u = 0 (at z = −h). A highly-accurate Boussinesq
method for this purpose is obtained by approximating the vertical distribution of fluid velocity by
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504 . In (3) and (4) the quantities û

∗ and ŵ∗ are utility variables which have
been introduced to allow Padé enhancement of the Taylor series operators. Optimal velocity
distributions are obtained near ẑ = −h/2, and we adopt this value here. Inserting (3) and (4) into
the KBC gives one equation relating û

∗ and ŵ∗ to each other. Combining this with (3) applied
at z = η, while also invoking the definition of Ũ, gives a 3 × 3 system that can be solved for
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û
∗ and ŵ∗ in terms of Ũ and η. More complete details on the basic finite difference model can

be found in [4], and we use the irrotational version described therein. This reference explores
a number of effective preconditioning strategies which allow a solution effort which scales very
nearly with N , the number of grid points distributed over a horizontal plane. The stability of the
resulting numerical method is further considered in [5]. Throughout this work we use the classical
fourth-order, four-stage explicit Runge-Kutta time-stepping scheme.

To include bottom-mounted fixed structures into the existing Boussinesq model is conceptually
trivial, but introduces several practical problems. It is well known that the potential flow solution
around an exterior corner is singular, predicting infinite velocity around the corner. The singularity
is rather weak however (proportional to 1/r1/3 in an infinite fluid) and one could argue that it has
no physical significance since viscosity and finite curvature effects will always make the velocities
finite in reality. In this spirit, we take an approach of not trying to “over-resolve” the flow near
a corner by simply defining the location of the structure to lie half way between grid points. See
Figure 1.

(a) (b) (c)

Figure 1: Placement of structures within the computational grid showing the treatments of mixed-
derivatives near an exterior corner. The shaded region is the structure, the center-point is given
by •, coefficients reflected across the walls are denoted · and land on the � points. (a) shows the
pattern taking the y−derivative first for a center-point adjacent to a vertical (in plan) wall. (b)
& (c) show potential stencils for a center-point not adjacent to a wall, when first taking the x-
and y-derivatives, respectively.

This figure also illustrates a second problem which concerns the treatment of mixed-derivatives
at points whose finite difference stencil overlaps an exterior corner. Figure 1 demonstrates this for
the 37-point stencil used throughout the present work. Wall conditions are imposed by reflecting
all coefficients which land outside of the fluid domain across the walls, under the assumption that
the function being operated on is either even or odd with respect to the boundary. Mixed x- and
y-derivatives have two obvious representations near a corner, which can be thought of conceptually
as taking the x-derivatives at all stencil points lying along the centerline in y, and then using this
result to take the remaining y-derivatives at the center-point; or the reverse. Since the continuous
derivative may be taken in either order, both of these approximations are formally consistent,
but they lead to different schemes having different symmetries about the corner. Three examples
are shown in Figure 1. As shown in Figure 1 (a), for center-points adjacent to a wall we first
conceptually take derivatives in the direction parallel to the wall, with the remaining derivatives
operating on these values. For points neighboring an exterior corner that are not adjacent to a
wall, we use a combination of the two possibilities shown e.g. in Figures 1 (b) and (c), which can
conceptually be thought as
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This approach conveniently leads to discretizations that are symmetric about the corner.
Both analysis and experience has shown that the resulting discretizations are prone to mild

linear instabilities (due to taking high-order derivatives around exterior corner points). Steep
velocity gradients are also typically present around these corners, which lead to numerical inac-
curacies and convergence problems. These tend to produce high-frequency noise, which can also



quickly excite nonlinear instabilities, or pollute the rest of the domain. To combat these problems,
we employ a sixth-order, 57-point (octagon shaped) Savitzky-Golay smoothing filter. Through-
out most of the domain this is applied incrementally after full time steps. Alternatively, around
structures we use a simpler version (summing the coefficients first along an x-, and then a y-line),
applied after each Runge-Kutta stage, sometimes repeatedly.

2 Test cases

We now present results from two numerical simulations with the Boussinesq model involving wave
interaction with bottom-mounted structures. All cases are discretized using ∆x ≈ ∆y ≈ L/20
with ∆t = T/20. We use a wavemaker relaxed over a distance consisting of a single wavelength,
with a similar relaxation zone at the opposing end to absorb the outgoing wave field.

The first case involves linear diffraction around a semi-infinite breakwater. We consider linear
waves with kh = π/2 propagating in the +y-direction on a 400 × 221 computational domain (the
domain is taken to be wide enough to avoid significant reflection from the side-walls over the
simulated time). A structure is placed covering the right-half of the domain, extending half a grid
point beyond the wavemaker in the y-direction. The origin is placed at the corner location. The
computed and theoretical diffraction diagrams are shown in Figure 2. The results are clearly not
perfect, but are reasonable. Most notably, there is an underestimation of the wave heights in the
shadow zone. The overall error in fact radiates quite regularly from the corner-point, however,
and the accuracy is likely sufficient for engineering purposes. A simulation with kh = 2π results
in a diffraction diagram having similar quality, with better agreement in the shadow zone, but a
slight increase in the error in the negative x-region. This will also be presented at the workshop.
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Figure 2: Computed (solid) and theoretical (dashed) linear diffraction diagrams with kh = π/2.

We finally present computational results involving deep-water wave run-up on a plate (due to
third-order effects) described at the 18th workshop in [1]. In the physical experiments a vertical 1.2
m bottom-mounted plate is projected from the sidewall a distance of 19.3 m from the wavemaker
in a 16 m wide, 3 m deep wave-tank (our simulations use a 383 × 201 computational domain,
with a smaller width of 12.3 m to ease the computational burden). We consider the case with
H = 0.046 m, T = 0.88 s and reduce the depth to h = 0.6 m. We use stream function incident
waves propagating in the +x-direction, giving a wavelength L = 1.22 m (kh ≈ π, H/L = 0.038).
Computed envelopes (taken over 55 < t < 60 s) along the front of the plate, as well as along
y = 0 are shown in Figures 3 and 4, respectively. The match with the measurements in Figure 3
is excellent. Comparisons with the measured time series are equally impressive on both sides of
the plate, matching the relative phase and amplitude very well. Note the extreme nonlinearities
involved; a maximum steepness of H/L ≈ 0.131 is observed a distance of L/2 in front of the plate
in Figure 4.
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Figure 3: Computed and measured free surface envelope in front of the plate.
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Figure 4: Computed free surface envelope along y = 0.
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