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Summary
In this paper we study the diffraction of incident surface waves on a floating elastic circular plate. The hydroelastic response of
the plate to a plane incident wave is investigated. An integro-differential equation is derived for the problem. The free surface
elevation and Green’s function are expressed in cylindrical coordinates as a superposition of Bessel functions. For the coefficients,
a set of algebraic equations is obtained, yielding the approximate solution. First, the case of infinite depth is considered. Then, a
solution is obtained for the general case of finite water depth analogously. The exact solution is approximated by taking a finite
number of roots of the dispersion relation into account.
Keywords: hydroelasticity, elastic circular plate, diffraction, surface waves, VLFP, deflection, wave modes, integral-differential
equation, Green’s function, Bessel functions, Hankel functions.

1 Introduction
Recently a number of papers was published considering the hy-
droelastic response of very large floating platforms. There are
several approaches to describe the interaction between VLFP
and surface waves, the following can be distinguished: asymp-
totic theory for short waves [1], parabolic approximation [2],
ray theory, variation equation method, eigenfunction expan-
sion method, Galerkin method, Wiener-Hopf technique. Many
of these results were presented at previous IWWWFB.

Mainly, the indicated articles studied the plates of one or
two infinite dimensions which significantly simplify the com-
plexity of analysis. For plates of finite extent, numerical meth-
ods are often used. Here we study this problem analytically.
We use Green’s theorem and an integro-differential formula-
tion for the deflection as derived and described in [3]. At previ-
ous Workshops we presented this approach for plates of semi-
infinite [4] or quarter-infinite extent [5].

Here, we consider a circular plate. This problem (the plate
modeled an ice field) was solved by Meylan and Squire [6]
for deep water. A closed form solution for a buoyant circular
plate floating on shallow water was found by Zilman and Miloh
[7]. We consider the problem of an elastic circular plate of
constant flexural rigidity and homogeneous stiffness for two
different cases: deep water and water of finite depth. The plate
deflection is generated by incoming surface waves. The edge
of the plate is free of shear forces and bending moments. We
describe the hydroelastic response of the plate to water surface
waves. The plate deflection is represented as a summation of
the product of Bessel functions and cosine functions.

At first, we study the behavior of a plate plate floating on
the surface of water of infinite depth (IWD). Also, this case
is a good starting point to construct a solution for the general
case of finite water depth (FWD). The general analysis and
set of equations are more complicated for the FWD case as
more roots of the water dispersion relation have to be taken
into account. Finally, we show and analyze numerical results
for various physical parameters of the problem.

2 Formulation of the Problem
In this section, we derive the general mathematical formulation
for the titled problem. The floating thin elastic circular plate of
radius r0 covers part of the surface of ideal, incompressible wa-
ter. The water depth h is infinite for the case of deep water and
finite for the other case. We assume that no space (gap) exists
between the free surface and the plate. The flexural rigidity of
the circular plate is constant.

The plate deflection is generated by surface waves prop-
agating in positive x-direction. The wave amplitude is rather

small compared to the wave height and the water depth. We
assume that waves propagate in still water. The problem is
considered in polar coordinates, but Cartesian coordinates are
used to derive main equations. The sketch of the geometry is
shown in Figure 1. We divide the fluid domain on the region
covered by plate P and the open fluid (water) region F with
the plate contour S (ρ = r0) as dividing line.
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Figure 1: Coordinate system of the problem.

The velocity potential Φ(~x, t) is a solution of the governing
Laplace equation

∆Φ = 0 (1)

in the fluid (z< 0). Equation (1) supplemented with the bound-
ary conditions at the free surface and at the bottom for finite
depth model, which are described in [3] and [4]. The linearized
free surface condition takes the form at z = 0 for x,y ∈ F

∂Φ
∂z

=−1
g

∂2Φ
∂t2 , (2)

where g is gravitational acceleration and t is the time.
The platform is modeled as an elastic plate with zero thick-

ness. Such model can be applied due to small thickness and
shallow draft of the platform. To describe the deflection of the
plate w(x,y, t) we apply the isotropic thin plate theory [8]. We
apply the operator ∂/∂t to a standard differential equation and
use the surface conditions to arrive at the following equation
for Φ on the plate area P at z = 0:

(
D∆2 + µ

∂2

∂t2 + 1
)

∂Φ
∂z
− 1

g
∂2Φ
∂t2 = 0, (3)

where the parameters D = D/ρwg, µ = mω2/ρwg are constant
and m is the mass of unit area of the platform, D is its equiv-
alent flexural rigidity, and ρw is the density of the water. We



consider harmonic waves, so Φ(x,y,z, t) = φ(x,y,z)e−iωt . Then
we reduce time-dependence, consider waves of a single fre-
quency ω and obtain

(
D
(

∂2

∂x2 +
∂2

∂y2

)2

−µ + 1
)

∂φ
∂z
−Kφ = 0, (4)

at z = 0, where K = ω2/g. The potential of the undisturbed
incident waves in polar coordinates is

φinc(ρ,ϕ,z) =





gA
iω

eik0ρcosϕ+k0z for IWD,
coshk0(z + h)

coshk0h
gA
iω

eik0ρcosϕ for FWD,

(5)

where A is the wave height and k0 is the wave number. For the
IWD k0 = K, while for the FWD k0 obeys the water dispersion
relation

k0 tanhk0h = K. (6)

The wave length of incoming waves is λ = 2π/K. We consider
the situation when the wave length is less than the diameter
of the plate (λ < 2r0). The edge of the circular plate is free of
shear forces and bending moments and the free edge conditions
at the plate contour S are written as:

(
∇2− (1−ν)

ρ

(
∂

∂ρ
+

1
ρ

∂2

∂ϕ2

))
w = 0, (7)

(
∂

∂ρ
∇2 +

(1−ν)

ρ2

(
∂

∂ρ
− 1

ρ

)
∂2

∂ϕ2

)
w = 0, (8)

where ν is Poisson’s ratio.

3 Derivation of IDE
Now we have only two equations from the free edge conditions
to determine the unknown amplitudes. In this section we will
derive an integro-differential equation (IDE) to complete the
set of equations that obeys the conditions of the continuity for
velocity and potential at the plate contour S . The formulation
has been derived in [9] and [3] for the general 3D case and now
we will rederive it in polar coordinates for the circular plate.

The total potential in area covered by plate P is denoted by
φP , while in the water region F it is written as a superposition
of the incident wave potential φinc and φdis, which is the sum
of classical diffraction potential and radiation potential.

We introduce the Green’s function G(~x,~ξ) that fulfills ∆G =

4πδ(~x−~ξ), the free surface and the radiation conditions. We
apply Green’s theorem to the potentials in F and P respec-
tively. The Green’s function itself has only a weak singularity,
so we may take the limit z→ 0 and use (4) to express φP in
terms of an operator acting on φP

z . Then we change from po-
tential to deflection function and obtain the general IDE

(
D
(

∂2

∂x2 +
∂2

∂y2

)2

−µ + 1
)

w(x,y) =

K
4π

Z

P

(
D
(

∂2

∂ξ2 +
∂2

∂η2

)2

−µ
)

G(~x,~ξ)w(ξ,η)dξdη + Aeik0x

(9)

for the plate deflection w at z = 0. The IDE in general form
in polar coordinates at the free surface, derived analogously,
takes the form

(
D∆2−µ + 1

)
w(ρ,ϕ) =

K
4π

Z

P

(
D∆2−µ

)
G(r,θ;ρ,ϕ)w(r,θ)r dr dθ + Aeik0ρcosϕ,

(10)

where G(r,θ;ρ,ϕ) is the Green’s function in polar coordinates,
and the last term represents the potential of incoming waves.

4 Deflection & Green’s Function
Here we will describe the deflection, Green’s function and cor-
responding Bessel functions for circular plate. The plate de-
flection can be represented as a series of Bessel functions with
corresponding coefficients in the following form:

w(ρ,ϕ) =
M

∑
m=1

N

∑
n=0

amnJn(κmρ)cosnϕ, (11)

where amn are the unknown amplitude functions, κm are the
reduced wave numbers, and M is the number of roots of the
’plate’ dispersion relation taken into account. For the IWD
case we will use 3 roots of the dispersion relation. For the
FWD case more than three roots need to be taken into account.
This is the result of water dispersion relation (6) which has one
real root k0 corresponding to only one wave number of deep
water and a number of imaginary roots ki, i = 1..M−3.

The Green’s function obeying the boundary conditions at
the free surface (and at the bottom for FWD) and the radiation
condition has the form

G(x,y;ξ,η) =−2
Z

L

F(k)J0(kR)dk, (12)

at z = 0, where

F(k) =





k
k− k0

for IWD,

k coshkh
k sinhkh−K coshkh

for FWD,

L is the contour of integration in the complex k-plane from 0
to +∞, underneath the singularity k = k0 for IWD or under-
neath the branch cuts k = ki for FWD, chosen for satisfying of
the radiation condition, J0(kR) is the Bessel function. Due to
Graf’s addition theorem it can be replaced by the series

J0(kR) =
∞

∑
q=0

Jq(kr)Jq(kρ)Cq, (13)

where r is the distance from the center of the plate to the point
of observation, Cq = cosq(θ−ϕ) and θ− ϕ is the angle be-
tween r and ρ. The upper limit in (13) can be taken as finite
due to decaying behavior of Bessel functions. So, the Green’s
function for circular plate in polar coordinates takes the form

G(r,θ;ρ,ϕ) =−2
∞Z

0

F(k)
∞

∑
q=0

Jq(kr)Jq(kρ)Cq dk. (14)

We insert the relations for the deflection (11) and Green’s func-
tion (14) into (9) and obtain the governing expanded integro-
differential equation at the free surface z = 0

(D∆2−µ + 1)
M

∑
m=1

N

∑
n=0

amnJn(κmρ)cosnϕ

+
K
2π

2πZ

0

r0Z

0

(D∆2−µ)
M

∑
m=1

N

∑
n=0

amnJn(κmr)cosnθ
∞Z

0

F(k)

×
N

∑
q=0

Jq(kr)Jq(kρ)Cq dk r dr dθ = A
N

∑
n=0

εnJn(k0ρ)cosnϕ,

(15)

where εn = (−i)n. Due to the orthogonality relation for the
cosine function we only get a non zero contribution for n =



q. The value of N will be chosen later. First we close the
contour of the integration. Then we work out the integration
with respect to r and θ in (15) and obtain the following set of
N + 1 equations from our IDE (n = 0..N):

M

∑
m=1

(Dκ4
m−µ + 1)amnJn(κmρ)+

Kr0

2

∞Z

0

M

∑
m=1

(Dκ4
m−µ)amn

F(k)Jn(kρ)

(k2−κ2
m)

[
kJn+1(kr0)Jn(κmr0)

−κmJn(kr0)Jn+1(κmr0)

]
dk = AεnJn(k0ρ). (16)

5 Infinite Water Depth
We transform the integral in (16) to the integral along vertical
axis in complex plane plus a sum of the residues. Application
of the residue lemma at the poles k = κm leads to a disper-
sion relation if we apply the residue lemma to the integrand
with preceding representation of each Bessel function as sum
of Hankel functions of first and second kind. Then the Wron-
skian can be used, see e.g. [10], at the poles k = κm for the
combination of Hankel functions

W{H(1)
n (κmr0),H(2)

n (κmr0)}=− 4i
πκmr0

. (17)

Thus we arrive at a dispersion relation for deep water
(
Dκ4−µ + 1

)
κ = k0. (18)

We take 3 roots of the dispersion relation into account for the
current problem: real positive κ1, complex κ2 and κ3 with
equal real and equal but opposite-signed imaginary parts. The
real root κ1 represents the main traveling wave, the 2 complex
roots represent evanescent waves.

After analysis of the set of N + 1 integral equations and
dispersion relation we have to consider the pole k = k0. We
repeat the transform of the integral in (16) and represent each
of Bessel functions as a half-sum of Hankel functions. Then, a
contour of integration can be closed. If we neglect the integral
along the imaginary axis, application of Jordan’s lemma and
the contribution of the pole k = k0 lead us to N + 1 relations:

πir0

3

∑
m=1

k2
0

k2
0−κ2

m

[
k0H(1)

n+1(k0r0)Jn(κmr0)

−κmH(1)
n (k0r0)Jn+1(κmr0)

]
(Dκ4

m−µ)amn = Aεn. (19)

The system for the determination of 3(N +1) unknown am-
plitudes amn can be completed by 2(N + 2) equations obtained
from the free edge conditions (7) and (8).

6 Finite Water Depth
Now, we consider the more general case when the plate floats
on water of finite depth. Let us analyze the meromorphic func-
tion F(k). The poles of function F(k) are roots of a dispersion
relation for the water region (6) k =±ki (i = 0..M−3), where
k0 is the positive real root and ki (for i 6= 0) is the purely imag-
inary. The meromorphic function F(k) is bounded for all roots
and can be described by the following relation:

F(k) =
M−3

∑
i=0

k2
i

k2
i h−K2h + K

(
1

k + ki
+

1
k− ki

)
. (20)

Now we insert relation (20) into (16), where we consider two
integrals in the complex k-plane, that can be combined into one

integral from−∞ to +∞ with the poles k = ki only. Finally, we
arrive at the governing integro-differential equation for FWD

M

∑
m=1

(Dκ4
m−µ + 1)amnJn(κmρ) +

Kr0

2

∞Z

−∞

M

∑
m=1

(Dκ4
m−µ)amn

× Jn(kρ)

(k2−κ2
m)

M−3

∑
i=0

k2
i

(k2
i h−K2h + K)(k− ki)

×
[
kJn+1(kr0)Jn(κmr0)−κmJn(kr0)Jn+1(κmr0)

]
dk

= AεnJn(k0ρ) (21)

at z = 0. We use the Wronskian (17) and apply the residue
lemma. The poles k = κm lead to the standard dispersion rela-
tion for water of finite depth

(
Dκ4−µ + 1

)
κ tanhκh = K. (22)

Here we will use M roots of dispersion relation: one real pos-
itive κ1, two complex κ2 and κ3, and M− 3 imaginary roots.
The position of roots κm in the complex k-plane is similar to
roots of water dispersion relation, except for two complex roots
κ2 and κ3, which are located in the upper half-plane.

We split up the Bessel functions into

Jq(kr0) =
H(1)

q (kr0) + H(2)
q (kr0)

2
, (23)

where q is n or n + 1. The integrals with H (1)
q (kr0) may be

closed in the upper-half plane, see Figure 2. The integrals with
H(2)

q (kr0) may be closed in the lower half-plane. In the latter
case we get a zero contribution.
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Figure 2: Closure of the contour

Application of Cauchy’s theorem to the integral closed in
the upper half-plane gives the following N + 1 equations to
determine the amplitudes amn

πir0

M

∑
m=1

Kk2
0

(k2
0−κ2

m)(k2
0h−K2h + K)

[
k0H(1)

n+1(k0r0)Jn(κmr0)−

κmH(1)
n (k0r0)Jn+1(κmr0)

]
(Dκ4

m−µ)amn = Aεn, (24)

and the poles k = ki, where i = 1..M− 3, result in a set of
(M−3)(N + 1) equations

πir0

M

∑
m=1

Kk2
i

(k2
i −κ2

m)(k2
i h−K2h + K)

[
kiH

(1)
n+1(kir0)Jn(κmr0)−

κmH(1)
n (kir0)Jn+1(κmr0)

]
(Dκ4

m−µ)amn = 0. (25)

Analogously to previous section, the free edge conditions (7)
and (8) give us 2(N + 1) equations. So, we have derived the
system of M(N +1) equations to determine the amplitudes amn
for a plate floating in water of finite depth.

7 Numerical Results and Discussion
After solving the system for IWD or FWD case, the deflection
of the circular plate can be computed by (11). The amplitudes



amn of each wave mode behave as decaying functions because
of the convergence of Bessel functions. Similar behavior of
these functions was reported by Zilman and Miloh [7] for shal-
low water. If we increase the flexural rigidity or the radius, the
functions converge faster. Taking first 30 terms of series into
account leads to sufficient accuracy for realistic values of the
rigidity. So, we can define N = 30. To avoid difficulties in
numerical computation when the argument of the functions is
small, it is possible to use the recurrence relation described in
[10].
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Figure 3: IWD. r0 = 500m, λ = 100m, D = 105m4.

-1

-0.5

 0

 0.5

 1 -1

-0.5

 0

 0.5

 1

-1.2
-0.6

 0
 0.6
 1.2

PSfrag
replacem

ents
x/r0
y/r0

W

x/r0

y/r0

W

Figure 4: FWD. h = 100m, r0 = 500m, λ = 100m, D = 105m4.
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Figure 5: FWD. h = 100m, r0 = 500m, λ = 200m, D = 105m4.

We show numerical calculations based on various values of
plate radius and flexural rigidity, while Poisson’s ratio ν = 0.25
and the ratio m/ρw = 0.25m3 are constant. Taking the wave
height A = 1m, and varying water depth and incident wave
length leads to different values of wave number k0, and re-
spectively, to the different values of frequency ω.

The number of the roots of a dispersion relation which are
taking into account for FWD case is M = 10. Generally, any
of the imaginary roots κm, m = 4..M does not affect the solu-
tion much. More details about the number of roots has been
published in [3].

In the Figures 3-5 W denotes the real part of the plate de-
flection normalized by wave height, i.e. Re(w)/A. The figures
demonstrate that the wave traveling through plate area prop-
agates with a curved wave front. In the zone closest to the
edge of the plate, the deflection has special behavior and can
be quite different from the deflection in the center zone, espe-
cially for low rigidity of the floating plate. For D > 109m4 the
plate behaves as a very rigid body, whereas for D < 103m4 the
plate hardly has any influence on surface waves. For smaller
values of plate rigidity, the plate deflection increases. If the
wave length decreases or the water depth increases, then the
deflection increases.

8 Conclusions
For the deflection of a thin elastic circular plate floating at the
free surface of the water with finite depth an exact analytical
solution has been obtained. For infinitely deep water the prob-
lem is solved approximately.

The finite water model can be used to solve the problem for
water of shallow or infinite depth. Floating platforms should
be located in offshore zones. The water depth is rather small in
those zones, but as wave length could be both short and long, it
is more general to use the finite water depth results to describe
the response of the plates to ocean or sea waves.

The presented approach can be extended to other rotational
symmetric configurations. The reflection and the transmission
coefficients of incoming waves can also be described by this
approach. More details and results will be presented at the
Workshop and published later in [11].
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