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1. ABSTRACT

A behavior of a floating elastic circular plate under unsteady external loading is studied. It is assumed that
the depth of the fluid is small in comparison with the radius of the plate, and the shallow water approx-
imation is used. The edges of the plate are free. A combined motion of the elastic plate with the fluid
is considered within the linear theory. The plate deflections for some unsteady external loads have been
calculated. The hydroelastic responses of the infinite plate and the bounded one to a unsteady load differ
essentially.

1. INTRODUCTION

The action of dynamic loads on thin floating plates is being studied intensively as applied to the infinite
ice sheets (see e.g. Squire et.al. (1996)). In addition, interest in the unsteady behavior of floating elastic
structures has increased recently because of the design of floating platforms for various purposes. The
operation of these platforms requires determination of their dynamic properties with respect to the action of
unsteady external loading due to intense traffic, load movement, takeoffs and landings of airplanes, missile
takeoffs, etc. The solution of unsteady 3-D hydroelastic problems is a difficult task even for linear formulation
and requires high computational cost (see e.g. Kashiwagi (2000)).

In this paper, a simplified model is proposed in which the depth of the fluid is assumed to be smaller
than the horizontal dimensions of the plate, and the shallow water approximation is used.

In the 2-D case unsteady response of an elastic beam floating on a shallow water under external load
with the vertical inertia of the moving mass was considered by Sturova (2002b). It is shown that the vertical
inertia of the moving mass must be taken into account only for the massive load and the large acceleration.

1. MATHEMATICAL FORMULATION

The circular elastic plate of radius r0 is freely floating on a fluid-layer having a constant density ρ and
depth H. The surface of the fluid that is not covered with the plate is free. The fluid is assumed to be
incompressible and inviscid, and its flow is irrotational. The velocity potentials describing the fluid motion
in the regions under the plate and outside the plate are denoted by φ(1)(x, y, t) and φ(2)(x, y, t), respectively.
Here x and y are the horizontal coordinates with the origin in the center of the elastic plate, t is time.

The plate deflection w(x, y, t) is defined by the equation

D∆2w + ρ1h1
∂2w
∂t2

+ gρw + ρ
∂φ(1)

∂t
= −P (x, y, t) (r ≤ r0), (1)

where ∆ ≡ ∂2/∂x2 + ∂2/∂y2, r =
√

x2 + y2, D = Eh3
1/[12(1− ν2)], E, ρ1, h1, ν are the effective Young’s

modulus, the density, the thickness, and Poisson’s ratio of the plate, g is the acceleration due to gravity.
The function P (x, y, t) is a prescribed function, and it describes the external pressure acting upon the plate
that is independent of the plate motion (so-called inertia-free loading).

According to linear shallow-water theory, the following relation is valid:

∂w
∂t

= −h∆φ(1) (r ≤ r0), h = H − d. (2)

Here d = ρ1h1/ρ is the draft of the plate.



In the free-water region, the velocity potential φ(2)(x, y, t) satisfies the equation

∂2φ(2)

∂t2
= gH∆φ(2) (r > r0), (3)

with the condition of damping out of the motion ∇φ(2) → 0 at r →∞.
It is also of interest to solve this problem under the assumption of a non-gravity fluid at r > r0. This

model is used in the theory of impact to study short-duration external action on a floating elastic body
(Korobkin (2000))

φ(2)(x, y, t) = 0 (r > r0). (4)

If r = r0, the following matching conditions (continuity of pressure and mass flow) must be satisfied:

∂φ(1)

∂t
=

∂φ(2)

∂t
,

∂φ(1)

∂r
=

H
h

∂φ(2)

∂r
. (5)

At the edges of the plate, the free-edge conditions are satisfied, which imply that the bending moment
and shear force are equal to zero:

∆w − ν1

r

(

1
r

∂2w
∂θ2 +

∂w
∂r

)

=
∂∆w
∂r

+
ν1

r2

∂2

∂θ2

(

∂w
∂r

− w
r

)

= 0 (r = r0),

where θ = arctg(y/x), ν1 = 1− ν.
We assume that at the initial time, the fluid and the plate are at rest:

w =
∂w
∂t

= φ(1) = φ(2) =
∂φ(2)

∂t
= 0 (t = 0). (6)

Non-dimensional variables are used below: r0 is taken as the length scale and
√

r0/g as the time scale. Then,
we use the following non-dimensional coefficients

β =
H
h

, γ =
d
r0

, δ =
D

ρgr4
0
.

3. EIGENFUNCTION EXPANSION

Let us assume for simplicity that the external pressure in eqn (1) is the even function on y and the plate
deflections are symmetric about the x-axis. In the non-dimensional variables, we seek the plate deflection
as the sum of eigenfunctions of a circular thin plate of unit radius with the free edge conditions

w(r, θ, t) =
∞
∑

n=0

cos nθ
∞
∑

j=0

ajn(t)Wjn(r). (7)

Here the functions ajn(t) are to be determined, and the functions Wjn(r) are the solutions of the eigenvalue
problem

LnWjn = λ4
jnWjn (r ≤ 1), Ln ≡

d2

dr2 +
1
r

d
dr
− n2

r2 ,

W ′′
jn + νW ′

jn − n2νWjn = (LnWjn)′ + n2ν1(Wjn −W ′
jn) = 0 (r = 1),

where the prime denotes derivation with respect to r. This eigenvalue problem is well studied (see e.g. Itao
& Crandall (1979)). There are two rigid body modes W00 =

√
2 and W01 = 2r. The other eigenfunctions

have the form
Wjn = Ajn[Jn(λjnr) + CjnIn(λjnr)].

The Jn are Bessel functions of the first kind and the In are modified Bessel functions of the first kind. The
frequency parameter λjn and the mode shape parameter Cjn are fixed by the eigenvalue problem, and the
amplitude parameter Ajn is fixed by the normalization requirement

∫ 1

0
rWjn(r)Wkn(r)dr = δjk,



where δjk is the Kronecker delta.
Since we are considering the symmetric problem about the x-axis, the potentials φ(1,2)(r, θ, t) may be

written as

φ(1,2)(r, θ, t) =
∞
∑

n=0

Φ(1,2)
n (r, t) cos nθ. (8)

Using eqns (7), (8), we seek the solution for Φ(1)
n (r, t) in the form which satisfies eqn (2)

Φ(1)
n (r, t) = − 1

h

{ ∞
∑

j=0

ȧjn(t)[Ψjn(r)− rnΨjn(1)] + rnqn(t)
}

, (9)

where an overdot denotes derivation with the respect to time, and the functions Ψjn(r) are determined from
the equation

LnΨjn(r) = Wjn(r).

For the rigid body modes they are equal to

Ψ00(r) =
r2

2
√

2
, Ψ01(r) =

r3

4
,

and for other modes we have

Ψjn = Ajn[CjnIn(λjnr)− Jn(λjnr)]/λ2
jn.

The functions qn(t) in eqn (9) are to be determined. Assuming that the fluid is non-gravity for r > 1 and
using eqn (4), we have qn ≡ 0. With regard to gravity these functions are determined from the matching
conditions for the potentials Φ(1,2)

n (r, t) and their derivatives with respect to r following from eqn (5)

Φ(1)
n = Φ(2)

n ,
∂Φ(1)

n

∂r
= β

∂Φ(2)
n

∂r
(r = 1).

According to eqn (3), the equation for Φ(2)
n (r, t) has the form

∂2Φ(2)
n

∂t2
= HLnΦ(2)

n (r > 1), Φ(2)
n → 0 (r →∞).

Using the notations

Φ(2)
n |r=1 = Sn(t),

∂Φ(2)
n

∂r
|r=1 = Tn(t),

and applying Laplace transform, we obtain the relation

Sn(t) =
√

H
∫ t

0
Tn(τ)Gn(

√
H(t− τ))dτ. (10)

Here so-called transition function Gn(ξ) has the form

Gn(ξ) =
1

2iπ

∫ σ+i∞

σ−i∞

Kn(s)
sK ′

n(s)
exp(sξ)ds.

The Kn are modified Bessel functions of the second kind. The functions Gn(ξ) are tabulated up to n = 10
by Randall (1958), and their simple approximations are given by Leclerc (1970).

We substitute eqns (7)-(9) into non-dimensional analog of eqn (1) and the initial conditions (6), multiply
the obtained relations by r cos(nθ)Wkn(r), and integrate them over r from 0 to 1 and over θ from 0 to 2π.
Using the properties of the functions Wkn(r), we obtain the system of ordinary differential equations (ODE)

∞
∑

j=0

äjn

[

γδkj −
1
h

D(n)
kj

]

+ (1 + δλ4
kj)akn −

1
h

Sknq̇n = −Pkn (k = 0, 1, 2...) (11)



with the initial conditions
akn(0) = ȧkn(0) = qn(0) = 0.

Here

D(n)
kj =

∫ 1

0
rWkn(r)[Ψjn(r)− rnΨjn(1)]dr, D(n)

kj = D(n)
jk , Skn =

∫ 1

0
rn+1Wkn(r)dr,

Pkn(t) =
εn

π

∫ π

0
cos(nθ)dθ

∫ 1

0
rP (r, θ, t)Wkn(r)dr, ε0 = 1, εn = 2 (n ≥ 1).

The system of ODE is closed by the integro-differential equation, which is a consequence of eqn (10)

qn(t) =
h√
H

∫ t

0

[ ∞
∑

j=0

ȧjn(τ)bjn + nqn(τ)
]

Gn(
√

H(t− τ))dτ, (12)

where
bjn =

∂Ψjn

∂r
|r=1 − nΨjn(1).

It is easy to show, that Skn = bkn. The system of integro-differential equations (11), (12) is simplified at
n = 0, 1, where all values Skn are equal to zero, except S00 = 1/

√
2 and S01 = 1/2.

Using the reduction method, the infinite sets in eqns (7), (8), (12) are replaced by finite sums. The
linear system of eqns (11), (12) is solved by method of finite differences with uniform time steps. For the
calculation of the convolution integral in (12) we used the method proposed by Kashiwagi (2000).

To test the computational algorithm, we used the solution of the steady-state problem of the action of
time-harmonic surface pressures on an elastic circular plate floating on shallow water (Sturova (2002a)). The
calculations for a circular plate were compared with the well-known solution for an infinite plate.

4. DISCUSSIONS

The plate deflections for some unsteady external loads have been calculated and will be presented at the
Workshop. The hydroelastic responses of the infinite plate and the bounded one to a unsteady load differ
essentially. As was noted previously for time-harmonic external loading (Sturova (2002a)) and for unsteady
loading of the elastic beam (Sturova (2002b)), in some cases, the amplitudes of oscillations of the plate at
its edges exceed the corresponding values for the middle region of the plate.
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