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SUMMARY 
 
In linear theory, the free surface can be defined as the position of a sheet of particles, as it evolves in time – this is as 
rigorous and consistent as the conventional definition. On this particle-sheet definition, the free surface “breaks” when the 
waves break, as described at the last Workshop. 
 
This paper considers the problem of a vertical cylinder from that viewpoint, and compares the results with experiments. 
At a cylinder radius c with kc = 0.29, and a wave steepness (based the waveheight 2a) of ka = 0.42, two small breaking 
waves form on either side of the cylinder, and propagate around it. The same thing happens in the experiments. 
 
Experimentally, however, additional surface phenomena are seen close (<0.2c) to the cylinder. There is a marked run-up 
at the front of the cylinder in a crest, and a smaller run-up behind the cylinder in a trough. A jet is also thrown up behind 
the cylinder after the crest has passed, which behaves ballistically. It appears that the explanation of the jet is the 
depression on either side of the cylinder, which is seen as well as the run-up, and which propagates round ahead of the 
breaking wave, to form a cavity behind the cylinder. The collapse of this cavity appears to throws the jet upwards. The 
resulting impact may explain the “secondary loading cycle” which is a well-known feature of this problem, associated 
with the phenomenon of “ringing”. 
 
Since a depression on either side of the cylinder is a feature of second-order theory, it is conjectured that a particle-sheet 
simulation with the second-order potential might reveal some of this additional behaviour. 
 
1.   BACKGROUND 
There is no single “consistent” linear theory for water 
waves, any more than there is, for example, to the 
problem of a simple pendulum. There, we can take 
moments about the pivot and write a linear differential 
equation for the angular motion θ, viz: 
 

02 =+ θθ mglml &&                       (1) 
 
where m is the mass of the pendulum bob, and l is the 
length of the string. Alternatively, we can resolve forces 
horizontally and write a linear differential equation for 
the horizontal motion x, viz: 
 

0/ =+ lmgxxm &&                          (2) 
 
These equations respectively have solutions: 
 

tωθ sinΘ=                              (3) 
tXx ωsin=                              (4) 

 
where ω2=g/l. Both are entirely consistent linear theories. 
To first order, they agree – but they have different 
higher-order errors. 
 
Likewise with water waves, the classical approach of 
applying a boundary condition on the still-water position 
z = 0, is not the only approach. We can alternatively 
observe that the solution to Laplace's equation for the 
velocity potential must (in the standard notation) be of 
the form: 

)sin( tkxekz ω−                          (5) 
 
by separation of variables. Then, we can apply boundary 
conditions on a sheet of particles, and observe that if 
ω2=gk, the pressure is constant there. To first order, there 
is no difference between adopting this as the free surface, 
and the conventional definition of the free surface as the 
pressure head –g-1∂φ/∂t on z = 0. But the higher-order 
errors are much less – in regular waves in deep water for 
example, this method has no second-order error. And in 
irregular waves (i.e. a combination of many of the above 
solutions, at different frequencies), the particles “escape” 
from time to time, with the free surface erupting into the 
shape of a breaking wave. This is a very natural 
explanation [1] of the universal phenomenon that 
irregular waves break – which is readily seen in any 
photograph of the real ocean. 
 
The same arguments apply to the diffraction of waves 
around a vertical cylinder. There, separation of variables 
gives the velocity potential as the real part of: 
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where Bm is the well-known McCamy-Fuchs 
combination of Bessel functions (see e.g. [2] p.390) and 
the polar coordinates r, θ replace the Cartesian 
coordinates x,y (with θ = 0 the +ve x-axis) The free 
surface can again be defined as a sheet of particles, and 
followed numerically to see if the wave breaks. 
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The vertical-cylinder problem is of interest because it has 
been widely studied with the conventional definition of 
the free surface (e.g. [3] takes the analysis to 3rd order), 
without revealing the complicated free-surface behaviour 
which is seen experimentally in the region kc, ka ~ 0.3. 
 
2. COMPUTED FREE-SURFACE POSITION 
In this region there is also a slender-body approximation 
to (6) which is given in [4] as the incident potential (5) 
plus a diffracted potential:   
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where U is the horizontal velocity ∂φ/∂x, and E is the 
horizontal velocity gradient ∂2φ/∂x2, both evaluated on 
the cylinder axis. 
 
In this paper we therefore compute the water surface 
around a vertical surface-piercing cylinder in four ways:   
 
I. Conventional free-surface definition, using the 

slender-body potential (5) + (7). It is necessary to 
omit the E term because the lnr in (7) implies 
infinite elevation at infinity – this is a well-known 
limitation of the theory.  

 
II. Tracking a line of particles, using the slender-body 

velocity field from (5) + (7). As in [1], the 
simulation was 2D only, tracking the particles in 
the plane y=0, and on the surface of the cylinder. 
Details are in [1]. 

 
III. Conventional free-surface definition, using the 

MacCamy-Fuchs potential (6). 
 
IV. Tracking a particle-sheet, using the MacCamy-

Fuchs potential (6) to obtain the surface in 3D. As 
in method II the integration of particle velocities 
was carried out by fourth-order Runge-Kutta 
methods, and checks were carried out to ensure 
that the results were independent of the time step.   

 
The measurements described below were made during 
the passage of the transient waves at the start of a regular 
wavetrain, and this situation was readily reproduced in 
the simulations by taking two equal-amplitude frequency 
components. The calculations were started with the 
cylinder at a null in these waves, so that the conventional 
free-surface was close to the still water level and gave a 
convenient initial position for the particle sheet. The 
simulation (method II – it could equally well have been 
method IV) was first run in the absence of the cylinder, 
in order to iterate for the amplitudes of the two 
components. The parameters obtained in this way were: 
 
                                   1st component          2nd component      
amplitude (cm)                  2.04                          2.04 
wavenumber (m-1)             5.90                          9.30 

where the amplitude given is based on the conventional 
definition –g-1∂φ/∂t of the free surface. The agreement 
between simulated and measured water surface elevation 
is shown in Fig. 1 – note that the mean vertical position 
in the simulations is considered to be irrelevant, and has 
been adjusted down by 1.9cm.   
 
The crest-to-trough height 2a of the wave under 
investigation is 11.1cm – together with the average 
wavenumber of 7.6m-1, this gives ka = 0.42. In the 
absence of the cylinder the wave was nevertheless well 
short of breaking. 
 

 
 
Fig. 1 Water surface histories in the absence of the 
cylinder, at the position of its axis: measurements 
(points) and time series used in the simulations (line).  
The time origin throughout is set to the instant 
corresponding to the passage of the crest. Images in 
Fig. 4, at intervals of 0.2s, are at the times shown by 
the positions of the broken lines. 
 
 
3. EXPERIMENTAL SET-UP 
The experiments were carried out in a wave flume 0.42m 
wide and 0.7m still water depth, with a vertical hollow 
perspex cylinder of outer diameter 0.1m. There are 
undoubtedly blockage effects in these conditions, but 
they are not thought to introduce major changes, and are 
discussed in [5]. A fluorescent solution added to the 
water improved the quality of digital images of the water 
surface, obtained at 120Hz by a camera positioned on 
one side of the tank in line with the cylinder’s axis.  The 
camera was angled downwards so as to view the water 
surface surrounding the cylinder, and since the cylinder 
was transparent, the run-up almost all the way around it 
could be measured from the images.  
 
4. RESULTS 
Fig. 4 shows four digital images of the free surface at 
intervals of 0.2s, with the third image just after the 
instant when the wave crest passes the cylinder axis. To 
the right of these images are the corresponding results of 
the full (method IV) particle-sheet simulations of the free 
surface. Also shown are measurements of the free surface 
position taken from the images, plotted against the results 
of all four calculations (methods I to IV). The results of 
the particle-sheet simulations (methods II & IV) have 
been moved down by 1.9cm (see Fig. 1). 
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5. DISCUSSION 
The most striking result is that the breaking wave seen 
propagating around the cylinder between the second and 
third images, is also seen in the particle-sheet simulations 
(with or without the slender-body approximation), 
despite the fact that they only use linear theory. This is 
however to be expected, since with the particle-sheet 
free-surface definition, linear theory predicts wave 
breaking more generally – see [1]. 
 
There is an interesting contrast with the alternative 
“wavy lid” approximation featured in [5]. That 
completely suppresses wave breaking, but has the 
advantage that closed-form expressions for the wave 
force, including the local effect at the surface, can be 
derived in the slender-body case. 
 
The thin run-up very close to the cylinder is also striking, 
especially in the wave crest, although it is also present in 
the wave trough. This appears to be the only feature 
which the particle-sheet simulations fail to predict. 
However, in the last image it may be seen that the water 
surface is higher immediately behind the cylinder than is 
predicted by the simulations. Its height has been 
extracted at all the intermediate images (i.e. at the 120Hz 
camera speed, which is 24 times faster than the sequence 
of Fig.4) and is plotted in Fig. 2 below.  
 

 
 

Fig. 2. Elevation of the water surface on the rear face 
of the cylinder: measurements (shown as points) and 
simulation. 
 
As may be seen, the water surface in the experiment is 
behaving ballistically, i.e. the water has been thrown up 
as a jet, and is now in free-fall. But not that in the 
simulations. 
 
It is also significant that the simulations completely fail 
to predict the “secondary loading cycle” first described in 
[5], which should be strong in the present case, according 
to [6]. This can be seen in Fig. 3 below, which shows the 
force on the cylinder predicted by the particle-sheet 
simulation.  
 
The explanation appears to be a feature of the water 
surface which cannot be seen in Fig. 4 because of the dye 
in the water. This is the depression in the surface close to 

the cylinder, which propagates around ahead of the 
breaking wave, and is readily seen in the photographs 
without dye in [5]. This depression ultimately forms a 
cavity behind the cylinder – it is the collapse of this 
cavity which appears to be responsible for both for the jet 
and the “secondary loading cycle”. 
 
Since a depression on either side of the cylinder (caused 
by the dynamic pressure, which is ignored in linear 
theory) is a feature of the second-order potential, it is 
conjectured that a particle-sheet simulation with this 
potential may reveal some of this cavitation behaviour. 
 

 
 
Fig. 3. Force on the cylinder, from simulation method 
II: total force (thick line); force from transient 
pressure (dots); force from hydrostatic pressure 
(short dashes), force from dynamic pressure (long 
dashes). The undisturbed water surface (by method I) 
is shown as a thin line.   
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Fig. 4. Laboratory observations (left column) and simulations (middle column) of the water surface around the cylinder at 
times indicated in Fig. 1. The simulations were obtained by method IV, i.e. updating surface particles with velocities 
computed directly from the MacCamy-Fuchs linear potential. The viewing angle of the simulations is shifted by 15o in yaw 
relative to that of the laboratory observations. The right column shows the corresponding water surface elevations 
alongside the cylinder computed by all four methods.  Measurements are shown as points. 
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Question by : J. Grue 
The secondary loading cycle is merely caused by a low pressure due to the square term in the 
Bernoulli equation, rather than the direct effect of the free surface elevation, I think. My 
group was the first to measure the secondary loading cycle (J.Grue, G.Bjorshol & O.Strand, 
9th IWWWFB, Oita, Japan,1994, see also J.Grue & M.Huseby, Appl. Ocean Res. 2002, vol 
24). In the measurements we identified a considerable low pressure behind the cylinder from 
free-surface elevation measurements. In your work (JFM vol 350 1997), the low pressure 
behind the cylinder, during the period of secondary loading cycle, was experimentally 
confirmed using pressure gauges. 
 
Author’s reply:  
The JFM paper you refer to was primarily due to my co-author John Chaplin, who unfortunately could 
not come to the workshop. He points out that the square term in the Bernoulli equation is insufficient 
to explain the large run-up ahead of the cylinder, and the deep depression behind it. In the case shown 
in Fig.12 of our JFM paper, these are about 10cm and 5cm respectively. But the maximum velocity in 
the incident wave is about 0.7 m/s, which corresponds to a Bernoulli pressure head of only 2.5cm. 
 
We are both mortified at having failed to acknowledge in the present paper that your group was the 
first to measure the secondary loading cycle. We certainly did so in our JFM paper, where your 
measurements are discussed in detail, citing an even earlier 1993 University of Oslo Report, by the 
same authors as your 1994 IWWWFB paper. 
 
----------------------------------------------------------------------------------------------------------------- 
 
Question by : H. Bredmose 
As I understand it, a linear model is here reported to throw particles to infinite heights. Since the 
model is linear, the result should then also be valid for a much smaller wave amplitude. How can this 
be? Is the strength of the singularity dependent on the amplitude chosen? 
 
Author’s reply:  
You have a point there. I only get “escape” of water particles above a certain wave height, but I claim 
the theory is still linear. 
 
Conventionally, however, a “linear” solution is often taken as a “scaled-infinitesimal” solution, i.e. the 
limiting case of small amplitude, times a scalar multiplier. It then has the property you cite, that it is 
equally valid (indeed more so) if we consider a much smaller value of the scalar multiplier. 
 
I have in fact two separate comments on that: 
 

1) this “scaled infinitesimal” solution is not unique, but depends on the choice of coordinate 
system. For example, in the pendulum problem, the scaled-infinitesimal solution θ = Asinωt 
appears, in Cartesian coordinates, as 

 
X = Lsin{Asinωt} = L{Asinωt + (1/3)(Asinωt)2 + …} 

 
which is clearly not the Cartesian scaled-infinitesimal solution X = Bsinωt. So I believe 
“linear solution” has a more general meaning, which is the one I am using, namely that the 
errors are 2nd order. 

 
How big can we allow the scalar multipliers A or B to be? Everyone would agree that it would be 
misleading to scale up the traditional pendulum solution above A = π, because this would conceal the 
way the pendulum goes “over the top” and finds a new equilibrium at θ = 2π. I am arguing that it is 
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equally misleading to adopt scalar multipliers for water waves that are large enough to permit an 
“escape” of the water particles. This is because the underlying argument in the classical theory 
considers the constant-pressure surface – but it could equally well consider the kinematically-exact 
surface, i.e. a sheet of particles. If particles have “escaped”, I believe it should be interpreted as wave 
breaking. 
 
----------------------------------------------------------------------------------------------------------------- 
 
Question by : M. Tulin 

 
1) Have you validated your “alternative method” by using it to predict the propagation of a wave 

train through to breaking in the case where exact numerical predictions exist? 
 

2) Was the damage to the tanker “Prestige” caused by an ocean wave in the process of breaking? 
 

Author’s reply:  
1) This comparison is underway at this moment – I am indebted to D.H.Peregrine for the loan of 

the latest version his exact numerical code (JFM vol 150 pp 233-251 and many later papers) 
for the purpose. Of course the agreement is quite close – at the end of the discussion of my 
paper at last year’s workshop I cite a simple case where the breaking threshold by my method 
is ka = 0.42. 

 
2) I believe so. There is a lengthy account of this casualty on the website of the American Bureau 

of Shipping (www.eagle.org), but it should be borne in mind that there is currently a lawsuit in 
New York between ABS and the Spanish Government. 

 
----------------------------------------------------------------------------------------------------------------- 
 
Question by : D.H. Peregrine 
 
Your approximation only works for short periods of time, does it not? 
 
Author’s reply:  
Absolutely. I am ignoring the effect of higher-order pressure errors on the free surface. The associated 
changes to the surface take time to build up, because the fluid takes time to respond to a force acting 
on it. So my approximation should be at its best if the waves quickly come to a focus and break. 
 
If you are talking about phenomena that take a long time to build up – like the Benjamin-Fier 
instability – then my approach is completely irrelevant (indeed, I predict that this instability should not 
occur). 
 


