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1 Introduction

The scattering of water waves by floating or submerged
bodies is a complex research topic. While analytic solu-
tions have been found for simplified problems (especially
for simple geometries or in two dimensions) the full three-
dimensional linear diffraction problem can only be solved
by numerical methods involving the discretisation of the
body’s surface. The resulting linear system of equations
has a dimension equal to the number of unknowns used
in the discretisation of the body.

If more than one body is present, all bodies will scatter
the incoming waves. Therefore, the scattered wave from
one body will be incident upon all the others and, given
that they are not too far apart, this will notably change
the total incident wave upon them. Therefore, the diffrac-
tion calculation must be conducted for all bodies simul-
taneously. Since each body must be discretised this can
lead to a very large number of unknowns. However, the
scattered wavefield can be represented in an eigenfunction
basis with a comparatively small number of unknowns.

The first interaction theory that was not based on
an approximation was developed by Kagemoto & Yue
(1986). Kagemoto and Yue found an exact algebraic
method to solve the linear wave problem for vertically
non-overlapping bodies in water of finite depth. The inter-
action of the bodies was accounted for by taking the scat-
tered wave of each body to be the incident wave upon all
other bodies (in addition to the ambient incident wave).
Doing this for all bodies Kagemoto & Yue were able to
solve for the coefficients of the scattered wavefields of
all bodies simultaneously. The only difficulty with this
method was that the solutions of the single diffraction
problems had to be available in the cylindrical eigenfunc-
tion expansion of an outgoing wave. Kagemoto & Yue
therefore only solved for axisymmetric bodies because the
single diffraction solution for cylinders was available in the
required representation.

The extension of the Kagemoto and Yue scattering
theory to bodies of arbitrary geometry was performed by
Goo & Yoshida (1990) who found a general way to solve
the single diffraction problem in the required cylindrical
eigenfunction representation. They used the representa-
tion of the finite depth free surface Green’s function in
the eigenfunction expansion of cylindrical outgoing waves
centred at an arbitrary point of the water surface (above
the body’s mean centre position in this case) given by
Fenton (1978).

The development of the Kagemoto and Yue interac-
tion theory was motivated by problems in off-shore engi-
neering. However, the theory can also be applied to the

geophysical problem of wave scattering by ice floes. A
method of solving for the wave response of a single ice
floe of arbitrary geometry in water of infinite depth was
suggested by Meylan (2002). The ice floe was modelled
as a floating, flexible thin plate of shallow draft. How-
ever, to understand wave propagation and scattering in
the by many ice floes, in the Marginal Ice Zone (MIZ) for
example, we need to understand the way in which large
numbers of interacting ice floes scatter waves. For this
reason, we require an interaction theory. While we could
use the Kagemoto and Yue interaction theory, their the-
ory requires that the water depth is finite. Since the water
is deep in the MIZ this means that we must set the finite
depth large in order to be able to apply their theory. For
this reason, we develop the equivalent interaction theory
to Kagemoto and Yue except for infinite depth. Further-
more, because of the complicated geometry of an ice floe
this interaction theory must be for bodies of arbitrary ge-
ometry.

In the first part Kagemoto and Yue’s interaction the-
ory is extended to water of infinite depth. We represent
the incident and scattered potentials in the cylindrical
eigenfunction expansions and we use an analogous infi-
nite depth Green’s function to the one used by Goo &
Yoshida, which is given by Peter & Meylan (2002). We
show how the infinite depth diffraction transfer matrices
can be obtained with the use of this Green’s function and
how the rotation of a body about its mean centre position
in the plane can be accounted for without recalculating
the diffraction transfer matrix.

In the second part, using Meylan’s result, the motion
and scattering of many interacting ice floes is calculated
and presented. For two square interacting ice floes the
convergence of the method obtained from the developed
interaction theory is compared to the result of the full
diffraction calculation. Solutions of more than two inter-
acting ice floes are presented as well. We also compare the
convergence of the finite depth and infinite depth meth-
ods in deep water. It is well known that diffraction cal-
culations in water of infinite depth require less numerical
effort than the equivalent finite depth calculations with
the depth chosen sufficiently deep. A similar advantage is
true for the interaction theory as well.

2 The interaction method

Kagemoto & Yue (1986) developed an interaction theory
for vertically non-overlapping axisymmetric structures in
water of finite depth. In this section we will extend their
theory to bodies of arbitrary geometry in water of infinite



depth.
The equations of motion for the water are derived

from the linearised inviscid theory. Only fixed radian
frequencies ω are considered so the time-dependence of
the water velocity potential is factored out, Φ(y, t) =
Re {φ(y)e−iωt}. The water surface is assumed at z = 0.

The problem consists of N vertically non-overlapping
bodies, denoted by ∆j , which are sufficiently far apart
that there is no intersection of the smallest cylinder which
contains each body with any other body. Let (rj , θj , z)
be the local cylindrical coordinates of the jth body and
α = ω2/g where g is the acceleration due to gravity. The
scattered potential of body ∆j can then be expanded in
cylindrical eigenfunctions,

φS
j (rj , θj , z) = eαz

∞∑
ν=−∞

Aj
0νH

(1)
ν (αrj)eiνθj

+

∞∫
0

(
cos ηz +

α

η
sin ηz

) ∞∑
ν=−∞

Aj
ν(η)Kν(ηrj)eiνθj dη,

with discrete coefficients Aj
0ν for the propagating modes

and coefficient functions Aj
ν(·) for the decaying modes.

The radial eigenfunctions H(1)
ν and Kν are the Hankel

function of the first kind and the modified Bessel function
of the second kind respectively, both of order ν. Analo-
gously, the incident potential upon body ∆j can be ex-
panded in cylindrical eigenfunctions. In this case, the
propagating and decaying radial eigenfunctions are given
by Jµ and Iµ respectively, the Bessel function and the
modified Bessel function respectively, both of the first
kind and order µ. The coefficients of the incident po-
tential will be denoted with Dj

0µ and Dj
µ(·). To sim-

plify notation, from now on ψ(z, η) will denote the ver-
tical eigenfunctions corresponding to the decaying modes,
ψ(z, η) = cos ηz + α/η sin ηz.

2.1 The interaction theory

Following the ideas of Kagemoto & Yue (1986), a system
of equations for the unknown coefficients of the scattered
wavefields will be developed. This system of equations is
based on transforming the scattered potential of ∆j into
an incident potential upon ∆l (j 6= l). Doing this for all
bodies simultaneously and relating the incident and scat-
tered potential for each body, a system of equations for
the unknown coefficients will be derived.

The scattered potential φS
j of body ∆j needs to be

represented in terms of the incident potential φI
l upon ∆l,

j 6= l. This can be accomplished by using Graf’s addition
theorem for Bessel functions given in Abramowitz & Ste-
gun (1964) which is valid provided that rl < Rjl. Here
and in the sequel, (Rjl, ϑjl) are the polar coordinates of
the mean centre position of ∆l in the coordinate system
of ∆j . The ambient incident wavefield φIn can also be
expanded in the eigenfunctions corresponding to the inci-
dent wavefield upon ∆l. LetDIn

l0µ denote the coefficients of
this ambient incident wavefield corresponding to the prop-
agating modes and DIn

lµ(·) to the decaying modes (which
are identically zero) of the incoming eigenfunction expan-
sion for ∆l. The coefficients of the total incident potential

upon ∆l can now be expressed as

Dl
0µ = DIn

l0µ +
N∑

j=1
j 6=l

∞∑
ν=−∞

Aj
0νH

(1)
ν−µ(αRjl)ei(ν−µ)ϑjl ,

Dl
µ(η) = DIn

lµ(η) +
N∑

j=1
j 6=l

∞∑
ν=−∞

Aj
ν(η)(−1)µKν−µ(ηRjl)ei(ν−µ)ϑjl .

In general, it is possible to relate the total incident
and scattered partial waves for any body through the
diffraction characteristics of that body in isolation. For
the propagating and the decaying modes respectively, the
scattered potential can be related to the incident potential
by diffraction transfer operators B acting as follows,

Al
0ν =

∞∑
µ=−∞

Bpp
lνµD

l
0µ +

∞∫
0

∞∑
µ=−∞

Bpd
lνµ(ξ)Dl

µ(ξ) dξ,

Al
ν(η) =

∞∑
µ=−∞

Bdp
lνµ(η)Dl

0µ +

∞∫
0

∞∑
µ=−∞

Bdd
lνµ(η; ξ)Dl

ν(ξ) dξ.

The superscripts p and d are used to distinguish between
propagating and decaying modes, the first superscript de-
notes the kind of scattered mode, the second one the kind
of incident mode.

Implying a suitable truncation, the four different
diffraction transfer operators can be represented by ma-
trices which can be assembled in a big matrix Bl, the
infinite depth diffraction transfer matrix. Truncating the
coefficients accordingly, al as the vector of the coefficients
of the scattered potential of body ∆l as well as dIn

l as the
vector of coefficients of the ambient wavefield and making
use of a matrix Tjl accounting for the coordinate trans-
formation, a linear system of equations follows,

al = B̂l

(
dIn

l +
N∑

j=1
j 6=l

tTjl aj

)
, l = 1 . . . N. (1)

The matrix B̂l denotes the infinite depth diffraction trans-
fer matrix Bl in which the elements associated with decay-
ing scattered modes have been multiplied with the appro-
priate integration weights depending on the discretisation
of the continuous variable.

2.2 The diffraction transfer matrix for
bodies of arbitrary geometry

The diffraction transfer matrices Bj relate the incident
and the scattered potential for a body ∆j in isolation.
Their elements, (Bj)pq, are given by the coefficients of
the pth partial wave of the scattered potential due to a
single unit-amplitude incident wave of mode q upon ∆j .

The calculation of the diffraction transfer matrices for
bodies of arbitrary geometry has been performed by Goo
& Yoshida (1990) in the case of finite depth. They used
the standard method of transforming the single diffraction
boundary value problem to an integral equation over the
immersed surface of the body using a Green’s function.
To obtain cylindrical eigenfunction expansions of the po-
tential, Goo & Yoshida utilised the representation of the
free surface finite depth Green’s function given by Fenton
(1978).



To calculate the diffraction transfer matrix in infinite
depth, we require the representation of the infinite depth
free surface Green’s function in cylindrical eigenfunctions,
given by Peter & Meylan (2002),

G(r; ζ) =
iα
2

eα(z+c)
∞∑

ν=−∞
H(1)

ν (αr)Jν(αs)eiν(θ−ϕ)

+

∞∫
0

ψ(z, η)
η2 π−2

η2 + α2
ψ(c, η)

∞∑
ν=−∞

Kν(ηr)Iν(ηs)eiν(θ−ϕ) dη,

r > s, where r = (r, θ, z) and ζ = (s, ϕ, c).
We assume that we have represented the scattered po-

tential in terms of the source strength distribution ς so
that the scattered potential can be written as

φS
j (r) =

∫
Γj

G(r, ζ) ςj(ζ) dσζ , r ∈ D, (2)

where D is the volume occupied by the water and Γ is
the immersed surface of the body. Substituting the eigen-
function expansion of the Green’s function into (2), the
scattered potential can be written in the cylindrical eigen-
function representation as long as r > s. This restriction
implies that the eigenfunction expansion is only valid out-
side the escribed cylinder of the body. The elements of
the diffraction transfer matrix are therefore given by

(Bj)pq =
iα
2

∫
Γj

eαcJp(αs)e−ipϕςjq (ζ) dσζ ,

(Bj)pq =
1
π2

η2

η2 + α2

∫
Γj

ψ(c, η)Ip(ηs)e−ipϕςjq (ζ) dσζ ,

for the propagating and the decaying modes respectively,
where ςjq (ζ) is the source strength distribution due to unit-
amplitude incident potentials of mode q.

For a non-axisymmetric body, a rotation about the
mean centre position in the (x, y)-plane will result in a
different diffraction transfer matrix. However, the addi-
tional angular dependence caused by the rotation of the
body can be factored out of the elements of the diffraction
transfer matrix. The elements of the diffraction transfer
matrix corresponding to the body rotated by the angle β,
Bβ

j , are given by (Bβ
j )pq = (Bj)pq ei(q−p)β .

3 Results

In this section we will present some calculations using the
interaction method in finite depth and infinite depth and
the full diffraction method in finite and infinite depth.
These will be based on calculations for ice floes and will
in no way be exhaustive. The wave scattering of a single
ice floe of arbitrary geometry was described by Meylan
(2002). The full diffraction calculation for many ice floes
can be derived straightforwardly from his work. Based on
Meylan’s results we begin with a convergence comparison
involving two square interacting ice floes on deep water
which aims to illustrate and compare the various meth-
ods. A result for more than two ice floes is presented after.
At first, however, some numerical considerations have to
be made.

For the numerical calculations truncation parameters
have to be introduced. Truncating the infinite sums in the

eigenfunction expansion of the outgoing water velocity po-
tential for infinite depth and discretising the integration
by defining a set of nodes ηm with weights hm the poten-
tial can be approximated by

φ(r, θ, z) = eαz
TH∑

ν=−TH

A0νH
(1)
ν (αr)eiνθ

+
TR∑

m=1

hm ψ(z, ηm)
TK∑

ν=−TK

Aν(ηm)Kν(ηmr)eiνθ.

(3)

In the following, the integration weights are chosen to rep-
resent the mid-point quadrature rule. In finite depth, an
analogous truncation can be performed. TR then denotes
the number of roots of the dispersion relation used in the
calculations. In water of finite depth, the depth can also
be considered a free parameter as long as it is chosen large
enough to account for deep water.

3.1 Convergence comparison

We will present a convergence comparison that aims to il-
lustrate the performance of the interaction theory and to
compare the performance of the finite and infinite depth
interaction methods in deep water. Results of full diffrac-
tion calculations serve as references.

To compare the results, a measure of the error from
the full diffraction calculation is used, (E2)2 =

∫
∆

∣∣wi(x)−
wf (x)

∣∣2 dx, where wi and wf are the solutions of the in-
teraction method and the corresponding full diffraction
calculation respectively.

The most challenging situation for the interaction the-
ory is when the bodies are close together. An interesting
and representative arrangement is where the second ice
floe is located closely behind the first. This arrangement
is used in this illustration. Tests with other arrangements
give similar results.

Since the choice of the number of propagating modes
and angular decaying components affects the finite and in-
finite depth methods in similar ways, the dependence on
these parameters will not be further presented. Thorough
convergence test have shown that in the settings investi-
gated here, it is sufficient to choose TH to be 11 and TK

to be 5. We will now compare the convergence of the in-
finite depth and the finite depth methods if TH and TK

are fixed (with the previously mentioned values) and TR

is varied.
The exact positions of the ice floes in this test are given

by O1 = (−1.4, 0) and O2 = (1.4, 0). Both ice floes have
non-dimensionalised stiffness β = 0.02 and mass γ = 0.02
(using Meylan’s non-dimensionalisation). The wavelength
of the ambient incident wave is 2, the side length of each
square ice floe is one wavelength. It should be noted that
for these ice floe parameters, the water can be considered
deep if the depth is greater than 1.5 (Fox & Squire, 1994).
The ambient wavefield is of unit amplitude and propagates
in the x-direction. In the full diffraction calculation the
ice floes are discretised in 24× 24 = 576 square elements.

Figure 1 shows the solutions in the case of water of
infinite depth. To illustrate the effect on the water in the
vicinity as well, its displacement is also shown. A close



view and a far view from above (plan view) are shown. In
the plan view, the discretisation mesh has been removed
and the greyscale has been interpolated for visibility.

Figure 2 shows the convergence for the infinite depth
method and the finite depth method with depth 3. As
can be seen, the convergence is quite similar. However, it
must be noted that the convergence of the infinite depth
method depends on the choice of nodes (an average set is
chosen in this comparison) while the convergence of the
finite depth method varies with the chosen depth.

3.2 Multiple ice floe results

The interaction method can now be used to calculate the
displacement of many interacting ice floes on water of in-
finite depth. Figure 3 shows the displacements of five
square interacting ice floes. The parameters are chosen
identically to those in the convergence comparison.

4 Summary

The finite depth interaction theory developed by Kage-
moto & Yue (1986) has been extended to water of infi-
nite depth. Furthermore, using the eigenfunction expan-
sion of the infinite depth free surface Green’s function we
were able to calculate the diffraction transfer matrices for
bodies of arbitrary geometry. We also showed how the
diffraction transfer matrices can be calculated efficiently
for different orientations of the body.

The convergence of the infinite depth interaction
method is similar to that of the finite depth method. How-
ever, for the infinite depth method the discretisation of the
continuous variable can be chosen optimally as opposed
to the finite depth method where the summation weights
are given by the roots of the dispersion relation. The infi-
nite depth interaction method has two further advantages.
Firstly, it requires the infinite depth single diffraction so-
lution which is easier to compute than the finite depth
solution. The second advantage is that there is no dan-
ger that the depth may have been chosen too shallow to
approximate infinitely deep water.
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Fig. 1: Interacting ice floes and their water in the vicinity,
close view and plan view
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Fig. 2: Development of the errors as TR is increased
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Fig. 3: Surface displacement of five interacting ice floes
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Question by : M. Kashiwagi 

1. In the infinite depth case, the infinite integral must be evaluated in place of the 
summation with respect to the wavenumber. How did you evaluate this integral? 

2. How are you going to treat the case of a great number of ice floes (the order of several 
thousands)? 

 
Author’s reply:  

1. Since the integral decays quickly it is sufficient to integrate up to a small positive 
number. This is done with standard numerical quadrature methods. 

2. Our aim is to be able to solve for a sufficient number of ice floes to observe 
convergence. We have not yet run these computations, but we hope to obtain 
convergence with hundreds of ice floes. 

----------------------------------------------------------------------------------------------------------------- 
 


