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Low-frequency ‘pumping’ modes are important for offshore structures with moonpools. In
many cases the response is large and it is important to predict the resonant frequencies. Analy-
ses of moonpools with vertical sides have been developed by Molin (2002), Tuck & Newman
(2002), and others. Moonpools with cross-sections which vary with the depth are important in
practical applications (Lee et al, 2002) and also for certain types of trapping structures (McIver
& McIver 1997). Trapping structures with two moonpools have been studied recently by Ship-
way & Evans (2002) and by McIver & Newman (2002); for these cases there are two pumping
modes, one corresponding to the pure trapping mode whereas the other radiates energy weakly
to the far field. In numerical studies it is difficult to discriminate between these modes.

The objective here is to analyze the low-frequency resonant modes for moonpools with vari-
able cross-sections. Linear potential theory is used. Two fundamental geometric assumptions
are made: (a) the moonpools are slender vertically, with slowly-varying cross-sections, and (b)
the fluid domain below the moonpools is bounded above by a rigid infinite plane, except for
the openings into the moonpools. Coupling between multiple moonpools is included following
the approach of Miles (2002). Three different examples are described: a simple torus with one
moonpool, a structure with two isolated moonpools, and a structure with concentric moon-
pools. The estimates of the resonant wavenumber K are compared with computations of the
added-mass coefficients, which are nearly-singular with pronounced zero-crossings at the same
frequencies (Newman, 1999).

1 General analysis

The cross-sectional area Si(z) of each moonpool varies slowly between its bottom z = zb

and the free surface z = zf . The index i = 1, 2, ... is used to identify each moonpool and the
subscripts f, b are used to denote values on the free surface (f) or bottom (b) of each moonpool.
The vertical z-axis is positive upward. Assuming dSi/dz is sufficiently small, the interior flow
can be approximated by a quasi-uniform vertical velocity wi(z) throughout the corresponding
moonpool. From continuity the volume flux Qi = wiSi is constant. Potential flow is assumed,
with the linearized boundary condition

Kφ − φz = 0 (1)

applied on the free surface of each moonpool. Here K = ω2/g is the wavenumber, ω is the
frequency, and g denotes gravity. All hydrodynamic quantities are assumed to be harmonic in
time with frequency ω.

The divergence theorem is applied to the fluid volume Vi in each moonpool. Thus
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where the unit normal n is directed out of Vi. For the volume integral the assumption of
quasi-uniform flow gives the relation
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The only contributions to the surface integral in (2) are from the upper and lower boundaries.
Using (1) it follows that
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Here the continuity condition wibSib = wifSif has been used, and
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is the ‘impulse’ on Sib. In z ≤ 0 the potential can be expressed in the form
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Substituting (3-6) in (2) gives the homogeneous linear system
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The eigenvalues of K determine the natural frequencies of the moonpools.
In the following examples the moonpools are axisymmetric, and the integrals (8) are evalu-

ated analytically using well known integral relations for the source potential 1/|x − ξ|.

2 Torus with one moonpool

The moonpool occupies the circular domain 0 < r < R(z) about the vertical z−axis, and
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Substituting this result in (7) and solving for K it follows that
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In the special case where S(z) =constant, this is consistent with Miles’ equation (3.3).
As examples we consider a cylinder with a moonpool of constant radius, and a torus with

semi-elliptical submerged sections. Table 1 compares the estimates from (10) with computa-
tions for the same structures using WAMIT. For the torus with elliptical sections the estimate
(10) overpredicts the resonant wavenumber, and the error increases as the moonpool radius is
increased relative to the draft.



cylindrical elliptical
rin rout (10) WAMIT (10) WAMIT
0.25 1.25 0.824 0.835 1.466 1.407
0.5 2.5 0.702 0.721 1.328 1.174
1.0 5.0 0.541 0.568 1.118 0.846

Table 1: Value of the resonant wavenumber based on the approximation (10), compared with zero-crossings of
the added mass from WAMIT. The cylindrical structure has vertical inner and outer surfaces and a flat bottom.
The elliptical structure is a torus with semi-elliptical sections. The inner and outer radii at the free surface are
listed in the first two columns. The draft is equal to 1.0.

3 Structure with two separated moonpools

Next we consider the structure shown in Figure 1, which includes two moonpools with their
axes at x = ±c. Except for the flat bottom between the moonpools the outer and inner
sections are elliptical. The diagonal elements of (8) are evaluated from (9). The integrals for
the off-diagonal elements can be evaluated in terms of the generalized hypergeometric series
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where β = Rb/c and (a)k = Γ(a + k)/Γ(a). In the range (0 < β ≤ 1) where the moonpools
do not overlap, the sum in (11) is nearly constant, increasing from 1.0 to 1.0888. Thus the
‘wide-spacing’ approximation in (11) is accurate within 9% througout the relevant range.

The dimensions used for the structure in Figure 1 are c = 1.5, Rb = 1, Rf = 0.5, over-
all length=6, beam=3, and draft=1. For this geometry the roots of (7) give the resonant
wavenumbers K1 = 0.987 and K2 = 1.131. These correspond respectively to symmetric and
anti-symmetric pumping modes in the two moonpools. For comparison Figure 1 shows the
heave and pitch added-mass coefficients of this structure for a range of wavenumbers. The
points where these pass through zero values with large negative slope are at K = 1.011 and
K = 1.032, respectively. Thus the agreement is within 2% for the symmetric mode and 10%
for the antisymmetric mode.

Figure 1: Structure with two separated moonpools. The perspective view on the left shows three of the four
quadrants. The heave and pitch added-mass coefficients are plotted on the right.



4 Two concentric moonpools

Here we consider an example analogous to a trapping structure with two concentric annular
moonpools. In this case the inertia coefficients can be expressed in terms of complete elliptic
integrals. For the example shown in Figure 2 both toroids have semi-circular sections with radius
1, with the radii of their centers at 1.5 and 4. Three added-mass coefficients are shown including
rigid-body heave of the entire structure, and two generalized modes which are more effective
in forcing the in-phase and out-of-phase pumping motions between the two moonpools. The
resonant wavenumbers for these two motions occur at K = 0.860 and K = 1.193 respectively,
based on the zero-crossings. The corresponding roots of (7) are at K1 = 0.834 and K2 = 1.438.

Figure 2: Structure with two concentric moonpools. The perspective view on the left shows three of the four
quadrants. The plot on the right shows the added-mass coefficients for heave of the entire structure (a33), heave
of the inner torus alone (a77), and radial motion of the inner structure (a88).
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Question by : M. McIver 
Have you considered moving the matching boundary upwards, in the case where the 
moonpools wider significantly at the bottom? 
 
Author’s reply:  
This would seem like a good way to improve the validity of the slenderness approximation in 
the moonpool domain. However it would invalidate (6) and complicate the solution of the 
problem in the lower domain. 
 
----------------------------------------------------------------------------------------------------------------- 
Question by : M. Tulin 
I’m curious if there are applications for these bodies and about experimental results. If 
irradiated the body would move. Does that change the trapped waves? 
 
As far as experiments are concerned, the only experiments I know for trapping structures are 
those conducted in London some years ago for the case of a circular cylinder in a channel. Of 
course, for the more general case of bodies with moonpools, there are many practical cases 
where experiments have been conducted and reveal significant resonant features, albeit with 
damping due to viscosity and separation. (One example with three coupled moonpools was 
included in our OMAE 2002 paper including a comparison with experiments) In the context 
of linear theory it should not matter if body motions are added, but refer to Maureen McIver’s 
abstract for further information about this. 
 
----------------------------------------------------------------------------------------------------------------- 
Question by : D.V. Evans 
Is it possible to relax the assumption of a rigid flat bottom to get a more realistic 
approximation to “pumping” trapped modes? 
 
Author’s reply: I don’t see how one could do a similar approximation with a more realistic 
outer body and free surface included. 
 
Comment by : D.V. Evans (on response to a comment by the author) 
Trapped modes can be important. For example the trapped modes around a vertical cylinder in 
a wave tank of infinite length have a strong connection with the large forces experienced on 
cylinders in the middle of a large linear array of equally spaced cylinders as pointed out by 
Maniar & Newman (JFM 1996). But these are a different type of trapped modes than those 
discussed here which have less obvious applicability. 
 


