
Abstract for 18th IWWWFB, Le Croisic, France, 2003

Water wave di�raction by vertical circular cylinder in partially
frozen sea

Malenica �S1 & Korobkin A.A.2

(1) BUREAU VERITAS - DR, Paris, France (sime.malenica@bureauveritas.com)

(2) Lavrentyev Institute of Hydrodynamics, Novosibirsk, Russia (kaaa@hydro.nsc.ru)

Introduction

The linear di�raction of an incident monochromatic wave by the vertical circular cylinder in the sea with
partially frozen free surface, is considered. It is assumed that the ice sheet is circular and �xed to the
cylinder (de
ection of the connecting point as well as the slope are zero) while the ice sheet is free at
its end (shear force and moment are zero). Potential 
ow is assumed for the 
uid and thin plate theory
for the ice de
ections. Furthermore, the ice sheet is assumed to have zero thickness and to be homo-
geneous with constant density and constant 
exural rigidity. The basic con�guration is shown on �gure 1.
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Figure 1: Basic con�guration and de�nitions.

Mathematical model

First of all, we divide the 
uid domain in two parts: the inner part below the ice sheet (a < r < R), and
the outer part without ice r > R. Under the potential 
ow assumptions, we end up with the boundary
value problem (BVP) for velocity potential �(x; t) in whole 
uid domain. This potential should satisfy
Laplace equation in the 
uid domain (�� = 0), no 
ow condition on the cylinder and on the sea bottom
(@�=@n = 0), classical linear free surface condition on the outer free surface (@2�=@t2 + g@�=@z = 0,
z = 0; r > R) and the coupling boundary condition on the inner free surface (z = 0; a < r < R), which
we discuss below.

Boundary condition on the ice-water interface

In order to obtain the boundary condition on the interface between the ice sheet and the water, we
should couple the 
uid 
ow with the ice sheet de
ections. To do this, we need to consider the kinematic
(equality of normal velocities) and dynamic (equality of the pressures) conditions. We start by writing
the governing equation for thin plate de
ections:
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whereW (x; t) is the de
ection,M is the mass of unit area, D is 
exural rigidity, P is the external pressure

and �0 denotes horizontal Laplace operator (�0 = 1
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that the pressure is equal to the hydrodynamic pressure which can be calculated from Bernoulli equation:
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On the other hand, the kinematic condition requires the equality of the normal velocities:
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After taking the time derivative of (1) we can combine two equations in one:
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We assume now the periodicity of the process [�(x; t) = <f'(x)e�i!tg;W (x; t) = <fw(x)e�i!tg] and we
write the frequency domain equivalent of the above boundary condition:
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In order to close the mathematical model we should also de�ne the boundary conditions at the edges of
the ice sheet. As stated in the introduction, at the connection point (circle) with the vertical cylinder we
require that the de
ection and the slope are zero:

w(a) = 0 ;
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while the shear force and bending moment are zero at ice sheet end (r = R):
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where � is Poisson's ratio.

Solution methodology

In order to solve the above de�ned BVP, we propose to use the method of matched eigenfunction expan-
sions. Due to the axisymetric geometry of the domain, we �rst expand all quantities in the Fourier series
in circumferential direction:

'(r; z; �) =
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�m'm(r; z) cosm� ; w(r; �) =
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�mwm(r) cosm� ; ::: (8)

where �m is equal to 1 for m = 0 and 2 for m > 0.
For each domain, we consider now the eigenfunction expansions for potential 'm in radial and vertical
directions.

Eigenfunction expansion in the outer domain r > R

Let �rst note that in the outer region the total potential is divided into the incident and di�racted parts:

'out = 'I + 'outD (9)

Since the BVP for the outer domain is the classical BVP for water wave di�raction and, due to the
relatively simple free surface condition (�!2'out + g@'out=@z = 0), the eigenfunction expansion can be
easily found in the form:

'outDm(r; z) =
1X
n=0

Amnfn(z)Hm(knr) ; fn(z) =
cosh kn(z + h)

cosh knh
(10)

where the eigenvalues kn are the roots of the dispersion relation !2=g = k tanh kh.



Note that the solution of the dispersion relation gives one real root k0 and in�nite number of imaginary
roots kn; n = 1;1. This imply that the eigenfunctions fn(z) becomes cosine functions and Hankel
functions Hm becomes the modi�ed Bessel functions Km, for n > 0. Note also that the set of the
eigenfunctions fn(z); n = 0;1 is orthogonal and complete.
For the incident potential we choose the classical regular sinusoidal wave of unit amplitude:
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Eigenfunction expansion in the inner domain a < r < R

Due to the same governing equation in the 
uid (Laplace equation) the eigenfunctions in vertical direction
are written in the form similar to (10):

Fn(z) =
cosh�n(z + h)

cosh�nh
(12)

However, due to the higher order terms in the free surface condition (5), the situation is more complicated,
and the eigenvalues �n, are the roots of the following dispersion relation:
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In contrast to the outer domain, the solution of this equation consists of one real root �0, in�nite number
of imaginary roots �n; n = 1;1 and two complex roots ��1; ��2. Also it can be shown that two complex
roots are related to each other by the relation ��2 = ���

�1
, with asterix denoting the complex conjugate.

Since the set of eigenfunctions Fn(z); n = 0;1 represents already complete and orthogonal set of
functions, the two remaining functions can be expressed as a linear combination of these functions. We
can write:
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where the coe�cients �k can easily be found using the orthogonal property of the basis functions
Fk(z); k = 0;1,:
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The general solution in the inner region can now be written in the following form:

'inm (r; z) =
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n=�2

Fn(z)[BmnJm(�nr) + CmnYm(�nr)] (16)

Linear system of equations for unknown coe�cients

In order to solve for the unknown potentials, we have to truncate the in�nite series in the expressions
(10,16) and derive the linear set of equations for the unknown coe�cients Amn; Bmn; Cmn. Let assume
that in the outer expansion (10) the series is truncated after L elements and in the inner expansion (16)
after N elements. This means that, in order to properly close the problem we need (L+1)+2�(N+1)+4
equations. These equations will be obtained after taking into account the boundary condition on the
cylinder, matching conditions on the interface between inner and outer domain and the end conditions
for the ice sheet. It is important to note that each Fourier mode have to be considered separately.

Boundary condition on the cylinder

As stated before, the boundary condition on the cylinder is the classical no 
ow condition requiring that
the radial derivative of potential is zero:
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Since there is only L + 1 independent eigenfunctions in the inner region, this condition will give L + 1
equations. The coe�cients of these equations are obtained by using the orthogonality property of the
eigenfunctions.



Matching of inner and outer eigenfunctions expansions

The matching conditions require the continuity of the pressure and the velocity through the matching
region: n
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If we multiply the �rst equation by the functions Fn(z); n = 0; L, and integrate from �h to 0 both sides
of equation we obtain additional L + 1 equations. By repeating the same procedure with the second
condition, but using the functions fn(z); n = 0; N , the new N + 1 equations are obtained.
Note that the choice of the eigenfunctions for each matching condition is arbitrary.

Boundary conditions for the ice sheet ends

As we can see 4 equations are still missing. They will be obtained by considering the boundary conditions
for the ice sheet ends (6,7). To do this let write the expression for the plate de
ections (3) in convenient
form:
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where : Sn = %!2=[%g � !2M +D�4
n
].

The �rst two conditions (6) at the connecting circle on the cylinder give following two equations:
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while the free boundary conditions at the outer circle (7) give:
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These equations complete the linear system, solution of which provides the coe�cients Amn; Bmn; Cmn.
The system is solved numerically by the classical methods.
The results for both horizontal and vertical force components on the cylinder and bending stresses in the
plate will be presented at the Workshop.
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Question by : M. Kashiwagi 
In the case of a bottom mounted vertical cylinder the evanescent waves will be zero in the 
conventional gravity waves. However, in the present problem the inner-domain solution 
includes various eigenfunctions. Why are those eigenfunctions needed in the present case? 
 
Author’s reply:  
The evanescent modes are present in the inner solution because the free surface condition 
change in this region. This means that the vertical eigenfunctions in the inner and outher 
domain will not be the same. The consequence is that the boundary conditions, on the cylinder 
and at the intersection radius, can not be satisfied without including the evanescent modes. 
 
----------------------------------------------------------------------------------------------------------------- 
 
Question by : R. Porter 
In your abstract you claim that the eigenfunctions Fn(z) in the inner region form a complete 
and orthogonal set for n=0,1, …, and that F-1(z) and F-2(z) can be expanded as a linear 
combination of Fn(z), n=0,1,… Is this correct? In the abstract of Evans & Porter, for example, 
we show that Fn(z) are non-orthogonal. I believe that the proof of completeness is not trivial. 
 
Author’s reply:  
It was a missprint in the abstract. The functions fn(z) are orthogonal but not Fn(z). In order to 
express the F-1(z) and F-2(z) by Fn(z), n=0,1,2,…, we have to solve a linear system of 
equations in order to found the required representation. As for the completeness, we agree that 
the proof is non-trivial, but we can say that in the present case the solution converges very 
quickly. 
 
 


