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ABSTRACT

This paper addresses the problem of unsteady wave generation and propagation in numerical wave tanks. 2D fully-nonlinear steep
wave patterns are at interest, �rst in the case of regular waves, and then for obtaining prescribed focused wave packets. The wave
generation process is simulated by means of an original method, involving an unsteady submerged dipole included in our recently
developed pseudospectral model for fully-nonlinear free surface ows in �nite water depth. Based on linear theory, an optimization of
the dipole strength and orientation at a given frequency is proposed, so as to generate waves in a single direction only; unidirectional
regular wave trains of di�erent steepness are shown. Using the linear transfer function of the dipole, this optimization is then extended
to the reproduction of any target wave pattern, by means of an unsteady dipole accounting for all the frequency components in the
signal. The e�ects of nonlinearities in the fully-nonlinear temporal generation process are studied on the illustrative case of a focused
wave packet.
KEY WORDS: Fully-nonlinear wave generation, Spectral method, Submerged dipoles, Focusing.

INTRODUCTION

Unlike other methods more commonly used in hydrodynamics, the pseudospectral approach is global, which means that the numerical
solution is not based on a discretization of the physical domain, but expanded in terms of orthogonal functions known everywhere.
Moreover the accuracy of the solution grows nearly exponentially with the number of functions kept in the expansion; this behavior is
referred to as the `spectral convergence'. Among others, examples of spectral methods applied to free surface ows include Dommermuth
& Yue [1] �rst, and more recently Yeung & Yu [2] in an annular viscous ow domain, or Le Touz�e et al [3] for simulations of a 3D
numerical wave tank at second order.

The drawback of the model is to be found in its limitation to (a priori) �xed-geometry uid domains. To overcome this limitation,
a wave generation process using submerged dipoles is employed and optimized in the present paper. Veri�ed on regular waves, it is
then extended to the case of focusing wave trains, which is of particular interest for o�shore design and operation. The ringing e�ect
on structures passed a focused wave peak, especially, is a critical issue under investigation (see e.g. Grue & Huseby [4]). The coupling
of the present method to a 3D di�raction code will lead us in the near future to a closer examination of that e�ect.

FORMULATION

Fully-Nonlinear Pseudospectral Modelling

A two-dimensional tank of water depth h and length Lx, partially �lled with an inviscid uid is considered. All the formulation and
results presented are nondimensionalized with respect to this water depth, and to the acceleration of gravity g. Under the potential-ow
theory assumption, the governing equation for the unknown velocity potential �(M(x; z); t) in the whole uid domain D is Laplace's
equation (1). The free surface is described through a classical single-valued representation at every time: z = �(x; t). Thus, the
nondimensional kinematic and dynamic conditions at the free surface FS write as (2),(3) where �(x) is an absorption coeÆcient used
to avoid reections on the side walls of the tank.
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On the tank walls and bottom the potential � has to satisfy homogeneous Neumann conditions; initially the uid is at rest.
In order to be able to generate waves in the tank of �xed geometry, the potential � is considered as the superposition of, on one

hand a pseudospectral potential accounting for the tank with its free surface, and analytically-known source terms used to generate
the waves on the other hand: �(M; t) = �tank(M; t) + �dipoles(M; t) in D. The pseudospectral part is formulated as a (truncated)
expansion in series of natural modes of the tank

�tank(M; t) =

N�X
m=0

am(t) cos(kmx)
cosh(km(z + 1))

cosh(km)
; M 2 D (4)

with respectively km = m�=Lx the wavenumber of the mth mode, and am(t) its unknown `modal time amplitude'; N� being the order
of truncation of modal series.

Wave Generation Source Terms

Monochromatic case. The source terms chosen to generate waves are submerged dipoles. This choice will allow us to generate
unidirectional waves. To do so we study the linear solution of the wave �eld created by a submerged Kelvin dipole. The potential of
such a dipole of momentum �!� (�x; �y), located at Mdip(xdip; zdip), writes in �nite depth in the frequency domain (see Gu�evel et al

[5]): e�dip = �!� :��!gradMdip
eF (M;Mdip)
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and where eFevan is an evanescent function we neglect. Imposing in addition e� = i!e�dip = i!(�x@ eF=@xdip + �z@ eF=@zdip) = 0
when x < xdip in (5), one deduces the following condition on the dipole momentum

�x = ith[M0(zdip + 1)]�z (6)

We will call `optimal submerged dipole' a Rankine dipole whose momentum�!� veri�es this condition (6). Hence, outside the evanescent
zone occurring right on top of this kind of linear dipole, it generates no wave in the negative x direction and a regular wave train at
its frequency towards the positive x, whose amplitude is

A(!) = 2�z
p
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Figure 1 compares this theoretical amplitude to the ones simulated at di�erent frequencies by the spectral model, utilized with a
Rankine dipole of same momentum and with very small amplitudes (i.e. in linear conditions). An excellent agreement is found
between numerical and analytical wave generation transfer functions. The analytical potential used in the model is eventually written
as

�dipoles(M; t) = R(t)A(!)

NimagesX
k=0

th[M0(zdipk + 1)] cos(!t)(x� xdipk) + sin(!t)(z � zdipk )

(x� xdipk)
2 + (z � zdipk)

2
; M 2 D (8)

in which a sum on the dipole images appears, required to take into account the presence of side and bottom walls. And R(t) is a
smooth time ramp applied to the �rst period of the generation.

One of the �rst studies on the generation of unidirectional
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Fig.1 Linear amplitude of the wave generated by a single dipole.

waves by means of submerged dipoles was due to Cl�ement
[6]. Having obtained satisfactory results with a circular spin-
ning dipole in deep water (considering the dipole momentum
vector in the vertical plane, it spins in time), he proposed a
heuristic extension for �nite depth cases. This consisted in
forcing the dipole momentum to reproduce locally the phys-
ical (horizontal major axis) elliptic motion of the particles
under a unidirectional wave train. This so-called `spinning
dipole' technique managed to reduce largely the waves gen-
erated towards negative x but not totally, and the result was
depending on the depth of submersion and of the frequency.
In contrast, with our `optimal submerged dipole' derived from linear �nite depth theory, we actually obtain no propagating wave �eld
to the x negative in all the cases simulated (cf. the results section); and taking a closer look at the dipole momentum vector motion
we �nd also an ellipse, but whose major axis is vertical this time.

Unsteady case. The �rst idea to generalize this monochromatic formulation is
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Fig.2 Example trajectory of the momen-
tum vector of the unsteady optimal
dipole (vector end is tracked).

to superpose dipoles of di�erent frequencies and phases, so as to generate unsteady
wave patterns such as sea states. The spectrum of the sea state is then divided
into bands of frequency with one dipole per band. This has been realized recently
and coupled to a 3D di�raction code to simulate a sea state impinging on a vertical
cylinder (see Ferrant & Le Touz�e [7]).

Another possible extension is to reproduce a given water elevation signal
recorded at a distance of the wave generator. To reach this aim we �rst realize the
spectral analysis of the target signal by Fourier Transform. Then the precedent
transfer function A(!) of the optimal dipole is employed to determine its momen-
tum e� in the frequency domain, including the phase shift linked to the distance
to the target �x: e�(i!) = e�probe(i!)=(A(!)e�k�x) with k the wavenumber
associated to the pulsation ! through the linear dispersion equation. Finally, we
re-construct the time evolution of the optimal dipole momentum by inverse Fourier
Transform. The resulting aperiodic momenta �x(t), �z(t) then replace the periodic
ones of the monochromatic case in (8). It should here be highlighted that although
its momentum varies unsteadily in time this dipole is still optimally adapted in
a linear sense. Figure 2 represents the trace of such a momentum vector, located
where the dipole lies in the tank. Its complicated motion reects the unsteadiness
of the wave �eld generated (in the circumstances a focused wave train).

NUMERICAL RESOLUTION

Spectral resolution. In the boundary-value problem previously described (equations (1) to (3)), the only unknowns are the
so-called `modal time amplitudes' am(t) and the free surface elevation �(x; t). The pseudospectral formulation (4) satis�es intrinsically
Laplace's equation (1) and homogeneous Neumann conditions. Remaining free surface conditions (2) and (3) are then discretized
at N� collocation nodes. To update the unknowns, we use a 4th-order Runge-Kutta time-marching scheme. The knowledge of the
am-unknowns at t+�t requires the resolution of a N�� (N�+1) linear system assembled from the dynamic condition (3) taken at the
N� collocation nodes. In all the simulations shown a square system (N� = N� + 1) is solved by means of a GMRES method, except
for the steepest case in regular waves where a 2-times overdetermination is chosen (N� = 2N� + 1) to help stability of the result; the
linear system is there solved through an Householder method.

Wave generation. In monochromatic cases the dipole momentum is straightforwardly obtained. When we apply the unsteady
scheme described above, more precautions shall be taken. Indeed a compromise is to be found in the choice of the frequency window



in the discrete Fourier Transform, on one hand we need to keep suÆciently high frequencies to reproduce properly the target signal,
and on the other hand we want to avoid numerical problems raising where the dipole transfer function goes to zero (because of the
division in e�(i!)). As for low frequencies, no such problems appear. A solution is to place the dipole closer to the free surface, which
shifts its transfer function towards the highest frequencies, but in that case the evanescent �eld produced provokes other diÆculties in
nonlinear cases (see results section). Eventually, a depth zdip = �0:4 and a pulsation window of [0:25; 5:2] have been selected, ! = 5:2
being suÆcient to be very close to the target in linear. An alternative to get rid of this diÆculty might be found in the splitting of the
frequency window into 2 (or even more) bands, each being taken in charge by a di�erent dipole submerged at a relevant depth. This
will be tried soon and presented at the workshop.

ILLUSTRATIVE RESULTS

Generation of Regular Waves

In order to check the eÆciency of our dipole optimization, we have �rst proceeded to the simulation of regular wave trains in
the tank. The features under question on this simple case were �rst the unidirectionality of the waves as cases deviate from linear
conditions, and more generally the stability of the generation method on strongly-nonlinear cases.

An example of the results obtained is shown on �g-
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Fig.3 Steady regular wave patterns in the tank for 3 di�erent steepness.

ure 3: a � = 0:5 wave train is generated in a Lx = 10
long tank by means of one monochromatic optimal
dipole located at (xd = 2:5; zd = �0:25) (materialized
by a thick dot on the last plot). The established wave
patterns are presented for three di�erent steepness,
with the steepness " being de�ned as the ratio of the
wave height H = �crest� �trough to the wavelength �.
The �rst plot is a quasi-linear case (" = 1%), the next
two are respectively nonlinear (" = 5%) and `strongly
nonlinear' (" = 10%). Parabolic absorption applies in
the �rst and last �fth of the tank. 193 modes and 30
time steps per period are selected, parameters far suf-
�cient to ensure converged results. For an easier visual
comparison, the three plots follow the same represen-
tative scale with respect to their steepness.

The �rst conclusion to be drawn is the noticeable
absence of waves generated to the left, and this for all
the three steepness. The optimization proves therefore
its eÆciency even for strongly nonlinear waves, at least
in steady cases. The other appreciable result resides
in the wave pattern itself which appears very regular and proved to be stable in time as well; typical nonlinear characteristics are
observable as steepness increases, such as higher crests than troughs, steeper crests, etc.

Reproduction of Focused Wave Packets

Once veri�ed the wave generation using an optimized steady dipole, the case of an unsteady target wave pattern has been investigated.
As quoted in the formulation section, the aim here is to reproduce the time evolution of the water elevation recorded at a probe settled
in the tank. A zoom of the target record chosen is shown on �gure 4, elsewhere in the [0 , 36.4] time window the target water elevation
is null. This focused wave packet impinging on a bottom-mounted cylinder is a case that has been studied experimentally in the
framework of CLAROM project. The wave tank we simulate corresponds to the one tested in the experience, with a target at 30m
from the wave generator for a water depth of 2:90m. In the plots the target location is materialized by a vertical dotted line at x = 20;
the unsteady submerged dipole is located at (x = 9:56; z = �0:4) (the other dotted line). The corresponding trajectory of the temporal
dipole momentum vector is shown on �gure 2.

Parabolic absorption applies in the �rst and last fourth of
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Fig.4 Target, linear and nonlinear peaks recorded at the probe
(scaled by the `7.3%-case' amplitude factor).

the tank, The [! = 0:25; ! = 5:2] window selected to oper-
ate the Fourier Transform corresponds to wavelengths from a
few centimeters to the tank length. Thanks to the `spectral
convergence' a relatively moderate number of modes, 193, is
suÆcient to ensure converged simulations. The same number
of collocation nodes is employed; with a spline interpolation
between calculation nodes applied for the �gures. A con-
verged time step of 0.1 is selected, so that the shortest wave
generated counts about 12 time steps per period. As a result,
those simulations are not only precise, but also reasonably
fast (about 10 minutes on a 1GHz-Pentium processor for 1000 time steps).

Results for three di�erent amplitudes are discussed hereafter: the �rst one is a linear case (very low amplitude corresponding to
an "peak = 0:015% local steepness at the peak), and the two others are fairly nonlinear when the focusing occurs ("peak = 4:1% and
7:3%). The `local steepness at the peak' de�ned as (�peak crest � �peak trough)=(2(xpeak trough � xpeak crest)) is used to quantify the
nonlinearity of the peak. Another signi�cant criterion is the maximum slope on the peak sides.

The linear case is selected to make sure of the validity of our model on its whole. Indeed, if the result provided by the loop
`Fourier Transform of the signal/determination of the unsteady dipole momentum/linear temporal generation and focusing' matches
back the target, the method is consistent. It is actually the case since target and recorded signals at the probe are almost superposed
(and would be with a wider frequency window) on �gure 4, that plots the water elevation evolution at this location for the di�erent
amplitudes simulated. Hence, the linear case is a valuable reference to study the inuence of nonlinearites. The quanti�cation of the



nonlinearities involved in the two nonlinear cases lead respectively to local steepness of 4.1% and 7.3%, and maximum slopes of 18%
and 39%, con�rming their importance. Those quantities are measurable on �gure 5 which represents the peaks shapes in space at their
maximum locations, normalized by the linear maximum (dotted horizontal line).

Figure 6 presents snapshots of the free surface at di�erent times of the linear and nonlinear wave packets propagation, including
the focusing and the start of the following dispersion. First, one can check once again
that the unidirectionality of the waves remains very satisfactory in this case as well.
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tial shapes at their respective
maxima (scaled by linear case).

Moreover, except a little perturbation appearing in the late stage of the nonlinear wave
generation, the deformations are very similar in the two cases before focusing occurs.
This phenomenon was expected since the focusing principle is relying on this very fact
that moderate amplitude waves of di�erent wavelengths can superpose temporarily to
produce a much steeper wave. However a little perturbation appears in the nonlinear
case, due to observed local steep water deformations right on top of the dipole where
evanescent waves are not negligible. The relative perturbation on the `7.3%-case' is twice
as big, which is still acceptable, but we stay dubious about our steeper run cases (up to
15%). The mentioned split of the frequency window should help. Even though, this high
frequencies perturbation being much slower than the desired long waves along with it is
generated, it does not reach the probe before the end of the time target window t = 36:4.

If one now takes a closer look at �gure 4, a little shift in time of the peak can be observed, gaining advance as nonlinearities increase.
This might be correlated to the reduction in nonlinear regular wave periods as their steepness increases. We note also a typical raising
of the crest and troughs, however the relative maximum of the strongest case appears is not relatively higher than in the `4.1%-case',
surprisingly. This interrogation �nds its answer in �gure 5 where it is noticeable that the `true' peak (de�ned as the time of maximum
water elevation) has shifted in space and appears further from the probe. On this �gure, one actually �nds back the increase in relative
maxima along with the local steepness.

Globally, the generated wave
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Fig.6 Snapshots of the free surface at 4 times of the generation -left: linear, right: "peak = 4:1%.

packet reproduces very satisfac-
torily the focused target signal
in linear simulations, and its
use in fully-nonlinear cases pro-
vides us with a focused wave pre-
senting typical nonlinear char-
acteristics. This solution will
be coupled to our 3D fully-
nonlinear di�raction model in
the very near future, as it has
been done before (Ferrant & Le
Touz�e [7]). This spectral model
properties of rapid convergence
and continuity of the solution
across the free surface make
it the relevant tool to realize
such a 2D-spectral incident/3D-
di�racted model. Comparison to wave loads measured experimentally in the CLAROM project shall be realized as well. Another
future development could consist in iterating on the di�erence between the nonlinear signal obtained at the probe and the target one,
so as to converge towards the target for any amplitude of it.

CONCLUSION

In this paper, an optimization of submerged dipoles to generate a unidirectional wave train is derived and proves to work properly in
linear cases as well as in strongly nonlinear ones. The presented spectral model including an optimized steady spinning dipole is shown
to simulate stable regular steep wave patterns. An extension of the dipole generation process to the reproduction of unsteady target
signals in the tank is proposed, and is applied to the case of a focusing wave train. This original method is validated on the linear case
and results for sharp nonlinear peaks are produced and commented. The method exhibits the usual performances of spectral schemes,
with respect to accuracy and rate of convergence. The solution appears to be reliable, precise and fast, and will soon be coupled to
simulate the di�raction of such focused wave trains on a 3D body.
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