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SUMMARY
The jet flow originated during the water impact of rigid bodies is investigated. In the framework of a potential
flow assumption, a numerical model is developed which allows an efficient and accurate description of the unsteady
flow taking place within the thin jet layer. To this aim, the modeled part of the jet is discretized with small control
volumes and, inside each one, the velocity potential is approximated by local harmonic expansions, coefficients of
which are recovered by enforcing boundary conditions on the body and on the free surface. An additional matching
condition between contiguous volumes is also applied to achieve regularity. The model is incorporated within a
boundary element solver, which is used to determine the solution in the remaining part of the fluid domain. For
validation, the model is used to simulate the flow generated by the wedge impact with constant entry velocity. A
rather good agreement with the similarity solution is achieved both in terms of free surface shape and pressure
distribution.

1. INTRODUCTION

Water impact is rather challenging due to the peculiar
features of the resulting flow, such as the development
of thin jet layers, the highly localized pressure peaks,
the possible occurrence of flow detachment from the
body contour. In this framework, numerical models
based on potential flow assumptions have been found
efficient and accurate but the description of the flow
close to the thin jet, developing about the intersections
between the body contour and the free surface, is not
straightforward. First attempts tried to follow all the
details of the free surface motion in the thin jet region
but results have been found dependent on the assump-
tions made at the jet tip [4, 3]. However, when attention
is mainly related to the hydrodynamic loads originated
during water entry, owing to the low pressure taking
place in the jet region, a very refined description of the
flow is not needed. On the basis of this consideration,
recently, numerical models that cut off the jet from the
computational domain have been introduced [5, 2, 1].
These models have been found rather stable and reliable
for a wide range of deadrise angles and have been also
applied with success to the impact of arbitrary shaped
bodies. On the other hand, a major drawback of these
models is the complete lack of information about the
jet, which could separate or not from the body con-
tour, therefore producing very different distributions of
pressure. This is crucial when the position of the sep-
aration point is not known a priori, as it is for smooth
convex contours like a circular cylinder, for instance.

In the present work the fully nonlinear boundary
element method, previously developed by the authors
[1], is extended to provide an improved description of
the flow in the jet region. To this aim, the jet region
is divided into small control volumes and, within each
one, local Taylor expansions of the velocity potential

are used, coefficient of which are recovered by enforc-
ing the boundary conditions and suitable matching re-
lations among control volumes. In this way the use of a
boundary integral representation in a very thin region
is avoided, thus allowing a stable and accurate descrip-
tion of the flow. It is expected that, once the flow inside
the thin jet layer is correctly described, the prediction
of separation phenomena becomes feasible.

In the following, the numerical model is described
and some results obtained for the impact of wedge shaped
bodies are shown as a purpose of validation.

2. NUMERICAL MODEL

The numerical simulation of the water impact prob-
lem is faced in the framework of inviscid and incom-
pressible fluid in irrotational flow. Moreover, surface
tension and gravity effects are also neglected. Let y
the vertical axis oriented upward, and x the horizontal
axis lying on the undisturbed water plane, the vertical
impact of a symmetric two-dimensional body with an
entry velocity w = (0,−V ) is governed by the following
equations:
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where the symbols are defined as in Fig.1. The pressure
is related to the velocity potential through the unsteady
Bernoulli equation:
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This initial-value problem is solved through a mixed
Eulerian-Lagrangian approach which makes use of a
boundary integral formulation to solve the boundary
value problem for the velocity potential at each time
step. To this aim, an integral equation is solved, pro-
viding the unknown value of the potential on the body
surface and that of its normal derivative on the free
surface:

ϕ

2
= −

∫
∂Ω

(ϕGn − ϕnG) dS (3)

G = 1
2π ln |P − Q| being the free space Green function

for the Laplace operator.
In discrete form, the boundary of the fluid domain

is represented by straight line panels and a piecewise
distribution of the velocity potential and of its normal
derivative is used along them. By integrating in time
the last two equations in (1) for the panel centroids, the
free surface position and the distribution of the velocity
potential along it are updated. Once the position of
the free surface centroids is updated, a cubic spline is
passed through them to reconstruct the distribution of
panel vertices. Distribution of panels is reconstructed
at each step in order to guarantee a good accuracy in
thin and highly curved region.

In order to determine the pressure distribution on
the body, the time derivative of the potential ϕt is cal-
culated at each time step, after the velocity potential
and its normal derivative are updated. The approach
is exactly the same as for the potential itself, but for
the boundary conditions which are

ϕt = −|∇ϕ|2/2

on the free surface and

ϕtn = n · a− wτ (un)τ + wn(uτ )τ − kτw · u (4)

on the body contour [1]. In equation (4) τ is the tangent
along the body contour, kτ is the local curvature, w and
u denote the local velocity of the body and of the fluid
particles at the same position and, finally, a is the local
acceleration of the body.
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Figure 1: Sketch of the system
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Figure 2: Sketch of the jet region

The use of boundary integral approaches to describe
the flow inside thin jet layers is not convenient. Actu-
ally, to get a good accuracy, the panel size must be
smaller than the local thickness of the jet and, more-
over, since a small angle usually occurs at the intersec-
tion, a region always remains near the tip which is not
properly discretized. To overcome this difficulty a jet
model is developed and coupled with the boundary in-
tegral approach, which continues to be used in the bulk
of the fluid domain. The idea is to decompose the jet re-
gion into small control volumes and to use local Taylor
expansion to approximate the velocity potential. The
coefficient of the expansions are assigned by enforcing
the body and free surface boundary conditions along
with some matching constraint introduced to link the
expansions among contiguous elements.

To explain how the model works, let consider a con-
trol volume Vi in the jet region, bounded by four ver-
tices (which coincide with panel centroids) P̂i, P̂i−1, P̄i
and P̄i−1 (see Fig.2). The velocity potential inside Vi
is approximated as an harmonic expansion

ϕJi (x, y) ' Ai +Bi(x− x∗i ) + Ci(y − y∗i )+ (5)
Di

2
[
(x− x∗i )2 − (y − y∗i )2

]
+ Ei(x− x∗i )(y − y∗i )

where (x∗i , y
∗
i ) are the coordinates of the volume cen-

troid P ∗i . The coefficients are recovered enforcing the
boundary conditions:

ϕJin(P ) =wn(P ), P = P̂i, P̂i−1

ϕJi (P ) =ϕ(P ), P = P̄i, P̄i−1 (6)

plus a fifth condition that enforces continuity with the
control volume V(i−1) either in terms of the potential
along the body contour or in terms of its normal deriva-
tive along the free surface:

ϕJin(P̄(i−1)) = ϕJ(i−1)n(P̄(i−1)) , (7)
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Figure 3: Comparisons between the free surface configuration obtained by the proposed model (solid line) and by
the similarity solution (dash line). The deadrise angle of the impacting wedge is 30◦ (left) and 60◦ (right). The
transverse segment denotes the boundary between the bulk domain and the modeled part of the jet (intermediate
region included).

ϕJi (P̂(i−1)) = ϕJ(i−1)(P̂(i−1)) . (8)

Tests done by using the two different matching condi-
tions have shown that results are essentially indepen-
dent of the choice.

Such model for the jet region is coupled with the
classical boundary integral representation on the rest
of the fluid domain. The discretized version of equa-
tion (3) is collocated on the panel centroids belonging
to the boundary of the bulk region; when integrating
along panels lying in the jet region, that is along the
faces of control volume which lie on the free surface
and on the body contour, the definition (5) is used.
Together with these equations, those coming from the
boundary conditions (6) and from the matching con-
dition (7) are solved. The unknowns of the resulting
linear system are: the value of the potential along the
body contour in the bulk region, the value of its normal
derivative along the free surface in the bulk region and
the value of the coefficients (Ai, . . . , Ei) for each of the
control volumes in the jet region. To make smoother
the transition between the bulk of the domain and the
jet region, an intermediate region is interposed, where
a weighted average of the potential is used:

ϕ(P ) = (1− li)ϕB(P ) + liϕ
J
i (P ) , P ∈ Vi (9)

ϕB denoting the velocity potential given by the bound-
ary integral representation. This intermediate region
cover a limited number of control volumes, with the
weight function li linearly varying from zero, at the
matching with the bulk domain, to one, at the match-
ing with the fully modeled zone. A similar average is
applied to the matching conditions. Extending the def-
inition of the weight function l, by putting l = 0 in the
bulk region and l = 1 in the jet region, the integral

equation, after substitution of (5) and (9), reads
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Concerning the calculation of the pressure on the
body, identical expansions are used for the time deriva-
tive of the potential ϕt, and a similar linear system is
assembled and solved. The solution provides the un-
known field ϕt along the body, which allows to eval-
uate the pressure by means of the unsteady Bernoulli
equation (2).

The separation of the fluid domain into the three
regions, bulk, intermediate and jet is made through the
following steps: first, starting from the tip, the angle
between the free surface and the body is monitored,
and the region where this angle is smaller than a (large)
fixed value, say 30◦, is selected. The extension of this
region fJ , defined as the curvilinear abscissa along the
body from the tip, is calculated. Then, the modeled
part of the jet region is assumed to be a fraction of this
zone, usually fM = 0.5fJ÷0.8fJ . Correspondingly, the
extension of the intermediate region is assumed to be
fI = 0.2fJ ÷ 0.5fJ .

3. VALIDATION OF THE PROPOSED MODEL

In order to validate the proposed model, the flow
generated by the wedge impact with constant entry
velocity is simulated and comparisons are established
with the self-similar solution obtained by solving the
boundary value problem written in a suitable set of non-
dimensional variables. Comparisons are established in
terms of the free surface shape and pressure distribu-
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Figure 4: Close up view of the pressure distributions in the jet region obtained by the proposed model (solid line)
and by the similarity solution (dash line). The deadrise angle of the impacting wedge is 30◦ (left) and 60◦ (right).
The square symbol along the curves represents the boundary between the bulk domain and the modeled part of the
jet (intermediate region included).

tion along the body surface for two different values of
the deadrise angle of the wedge, 30◦ and 60◦.

At the beginning of the simulation the wedge is
slightly immersed in an elsewhere undisturbed free sur-
face, and the jet model is still not activated. The free
surface, during the first time steps, raises on the body
and develops the jet layer along it; at that moment the
jet model is activated, and the simulation continues un-
til the self similar solution is reached.

In the numerical simulation typical values used for
fM and fI are 0.8 and 0.35, respectively. The panel dis-
tribution is built by choosing the smallest panel ampli-
tude at the matching point between the modeled part
and the bulk of the fluid. The smallest panel size is
usually assumed to be one third of the local jet thick-
ness. Hence, the panel size is progressively increased
moving along the free surface and the body. A similar
procedure is followed to choose the width of the control
volumes in the modeled part of the jet.

In Fig.3 the non-dimensional free surface shape is
shown. The agreement with the similarity solution is
rather satisfactory, although the proposed model pre-
dicts a smaller wetted area for the 60◦ case. A very
good agreement is found at the jet root where, also, a
smooth transition from the modeled part of the jet to
the bulk of the fluid is obtained.

In Fig.4 the comparison is presented in terms of non-
dimensional pressure distribution. Attention being fo-
cused at the details of the solution in the jet region, only
a close up view about the modeled part is shown, where
pressure is very low. In the 60◦ case the agreement is
very good, while for the 30◦ case a small disagreement
occurs just at the first few elements of the modeled part
of the jet.
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